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Abstract

We describe high power 150 W CW output power 36-mm
gate-periphery AlIGaN/GaN HEMT:s on a SiC substrate with a
power added efficiency (PAE) of 54% operated at 63 V drain
bias voltage (Vds). Vds dependence of third order-
intermodulation (IM3) was also characterized at Vds up to
50 V. Preliminary reliability was characterized using a RF
power stress test. A CW P3;5 RF-power measurement at Vds of
60 V exhibited good reliability for 1000 h.

INTRODUCTION

AlGaN/GaN-based high electron mobility transistors
(HEMTs) are promising for microwave power applications,
including wireless base stations. There are many reports
related to high output power characteristics [1-2]. However,
not many papers exhibited high efficiency characteristics
using a large gate-periphery device operated at over 40 V
drain bias voltage. Base station system demands high
efficiency from amplifier, requiring low quiescent bias
current. In this paper, we demonstrate high power
performance near class-B operation. To obtain higher RF-
power and efficiency, we have to suppress frequency
dependent instabilities, such as large transconductance (gm)
dispersion, gate-lag and current collapse. We controlled the
polarization-induced surface charge by n-type doping in a
thin GaN cap on AlGaN and stabilized n-GaN-surface
between electrodes using SiN [3]. A 150 W CW saturation
power was achieved at a 63 V operation with a PAE of 54%
and a linear gain of 12.9 dB [4].

In addition, a low distortion characteristic near class-B
operation is required for the base stations using digitally
modulation scheme such as IMT-2000. The crest factor of a
peak to average power ratio is as high as 8 dB. Therefore, it
is important to consider the distortion at an average power
level 8 dB back-off from saturation level. Thus, in addition
to the high saturation power (Psat), high efficiency and low
distortion at 8-10 dB backed-off power level from Psat is
required. Moreover, pre-distortion systems can better predict
the pre-distorted input signal if the device presents a simple
monotonic IMD profile without sweet spots. We obtained a
superior linearity profile for a Imm-gate periphery

AlGaN/GaN HEMT [5] biased at 30 V. We also studied
distortion characteristics for larger gate-peripheries.

Reliability has become an important issue to be discussed
in the manufacturing of AlGaN/GaN-HEMTs. For this
purpose, we submitted the device to RF stress to investigate
stability of HEMT performance under continuous power
operation. A CW P34z RF-power measured at 60V drain bias
exhibited good reliability for 1000 h.

DEVICE TECHNOLOGY

To suppress instabilities related to frequency dispersion,
such as large-signal current collapse and gm dispersion, we
introduced an n-type doped GaN cap layer into the
AlGaN/GaN HEMTs structure to control the polarization-
induced surface charges [3]. Figure 1 shows the device
structure on SiC substrates investigated in this study.
Detailed fabrication method was described in the previous
papers [3-6].

Recessed ohmic technology was introduced to obtain
lower ohmic contact resistance [7]. Only n-type doped GaN
cap layer was removed. Figure 2 shows etching depth
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Fig.1.  Schematic drawing of investigated the surface-
charge-controlled n-GaN-cap structures. Thin n-type GaN cap
layer was grown on AlGaN/GaN structure. SiN passivation
was formed on GaN cap layer between electrodes.
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Fig. 3. Photograph of AlGaN/GaN HEMT chip.
The total gate width is 36 mm with a unit gate width of
400 pm.

dependence on specific contact resistance. The Al content in
the AlGaN layer was 29 %. Specific contact resistance
decreased from 9.80 x 10* Qcm? for conventional structure
to 2.56 x 10 ° Qcm’. These results mean that removing n-
GaN cap layer enhanced tunneling transport of electrons.

The current-collapse-free AlGaN/GaN HEMT die was
mounted on a conventional metal/ceramic package. The gate
periphery is 36 mm with a unit gate width of 400 mm, as
shown in Fig. 3. A single-chip amplifier was designed for
W-CDMA base station applications with a frequency of
2.1 GHz. Quiescent drain current (Idsq) is 1.4% Ifmax near
class B, which is mainly used in base station system [6]. We
measured all performance using a packaged chip on a test-
fixture, which was tuned at 30 V drain bias voltage. When
we changed the drain voltage, the matching conditions
remained the same.

RESULTS AND DISCUSSION

1) DC & RF Characteristics: Figure4 shows I-V
characteristics. Good pinched-off characteristics were
obtained. On-state and off-state breakdown voltages were
over 100 V and 160 V respectively. Figure 5 shows pulsed I-
V characteristics. Power operation was obtained with device
biased at 50V in class B. Pulsed mode on-resistance (Ron)
did not increase compared with DC-mode, indicating that
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Fig. 4. 1-V characteristics of 40-um gate periphery. 100 V
operations were studied using (a) a semiconductor parameter

analyzer and (b) a 100-Hz curve tracer.

Vs i -2to +2 VWV by 1V step
750

DC

Pulse

Bias peint
(Vs B0V, Vit 2V)

I

-9

0 10 20 30 40 50 60

Ys (V)

Fig. 5. Pulsed I-V characteristics. Bias point was Vds of 50 V
and Vgs of —2 V. Pulse period and pulse duration are 1 ms and
lus, respectively.

current collapse can be suppressed with our proposed
device structure.

2) Power performance: Figure 6 shows power performance
measured at Vds equal to 63 V. A state-of-the-art 150 W
CW saturation power was achieved with a PAE of 54% and
a linear gain of 12.9 dB. Figure 7 shows the drain supply
voltage dependence of the power amplifier performance.
The PAE decline is drastically improved due to the current-
collapse-free operation. We also obtained the record
saturated peak power of 174 W in practical 4-carrier W-
CDMA modulation scheme [6].



3) Distortion characteristics: We reported previously [4] that
superior linearity can be obtained at Vds equal to 30 V for a
Imm-gate periphery AlGaN/GaN HEMT. In this paper, a
larger gate periphery is investigated and the intermodulation
results are in Figure 8. Tone spacing is 1 MHz. A simple
IM; profile could also be obtained for a large gate-periphery
device at Vds equal to 24V. However, at S0V, IMj; profile
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Fig. 6. CW power measurement results of single-chip

AlGaN/GaN HEMT amplifier at 2.1 GHz. Quiescent drain current
is 500 mA at Vpg=63 V.
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Fig. 7. Drain supply voltage dependence of output power
POUT, Gain GL and power-added efficiency PAE of
AlGaN/GaN HEMT amplifier at 2.1 GHz.

had sweet spot feature [S]. We performed the measurement
with the same matching circuit as 24V, so the tuning
condition was not optimized for 50V operation. We believe
optimized tuning for 50V gives a simple IM; profile as good
as 24V. Figure 9 shows the difference of upper sideband
IM3 and lower sideband IM3. This memory effect is
important for digital pre-distortion system in IMT-2000 [4].
As shown in Fig. 9, the difference of upper IM3 and lower
IM3 is quite small for a wide range of output power for 50V
operation.

4) Reliability: We investigated reliability performance, a
very important issue at high drain bias operation. The RF-
stress test was examined under P;4z conditions at Vds
between 30-60 V as shown in Fig. 10. To accelerate the
aging test, Idsq was set at 15 mA/mm. In the previous
reports, Pout and Gain decreased almost 0.2 dBm within one
hour, when operated at 30-40 V [8]. Now, with our newly
improved collapse-free AlIGaN/GaN HEMTs operated at 60
V, showed no degradation of power and gain for 1000 h.
This is the first report of stable operation at 60 V.
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Fig. 8. 2-tone intermodulation characteristics measured at a) 24
V and b) 50 V. Measured frequency is 2.2 GHz. Idsq is 1.4%
Ifmax near class-B. Gate width is 24 mm. Tone spacing is 1
MHz. Both upper and lower distortions are shown in this figure.
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Fig. 9. Memory effect of GaN-HEMT at Vds of 50 V.
Difference between upper distortions and lower
distortions are shown in this figure. Gate width is

24 mm. Tone spacing is 1 MHz.
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Fig. 10. Power characteristics under P3dB RF-stress test at
30 V,40 Vand 60 V.

CONCLUSIONS

In summary, we have demonstrated successful
AlGaN/GaN HEMT operation with no current collapse at
high drain bias voltages of up to 63 V. To our knowledge,
the AlIGaN/GaN HEMT single chip amplifier exhibited the
highest saturated peak power of 150 W in CW mode and the
highest saturated peak power of 174 W in W-CDMA
modulation reported so far. RF-stress test under P34 showed
stable performance up to 60 V for 1000 h, for the first time.
These results are very promising for application of
AlGaN/GaN HEMTs to the wireless infrastructure market,
especially 3rd-generation base station power amplifiers.
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