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Abstract 

The current collapse suppression capability after 
high OFF-state drain bias stress of a newly developed 
passivation technique using an AlN/SiNx stack structure 
without multiple field plates in high-voltage AlGaN/GaN 
HEMTs is demonstrated in this work. The increase of 
dynamic RON is suppressed to only 57% of the static RON 
during OFF-ON switching after a high drain bias stress 
of 650 V. The AlN/SiNx-passivated HEMTs deliver a 
high ON/OFF current ratio of more than eight orders of 
magnitude. The maximum drain current reaches 
900 mA/mm, while the drain leakage current remains 
below 0.7 µA/mm at VDS up to 600 V with VGS = −5 V. 
Owing to the low OFF-state leakage, a steep 
subthreshold slope of 63 mV/dec was simultaneously 
achieved. The breakdown voltage of the AlN/SiNx-
passivated HEMTs with a specific ON-resistance of 
1.3 mΩ∙cm2 was measured to be 632 V at a drain leakage 
current of 1 µA/mm, resulting in a high figure of merit 
(FOM = BV2/Ron, sp) of 310 MW∙cm2, which is highly 
desirable for high voltage power switching applications. 

INTRODUCTION 

GaN-based power devices have been regarded as 
promising candidates for high-frequency and high-power 
applications owing to the superior material properties such 
as high polarization-induced 2DEG density, high electron 
saturation velocity and high critical breakdown electric 
field. In spite of these advantages, current collapse has been 
a major hindrance to the deployment of AlGaN/GaN 
HEMTs in RF/microwave and power electronics 
applications [1, 2]. Such techniques as applying SiNx to 
reduce surface states in the gate-drain access region and 
introducing field plates to alleviate electric field strength 
peak at the drain-side gate edge in the OFF-state were 
proved to be effective in suppressing this undesired 
phenomenon [2, 3]. It has been shown that SiNx passivation 
needs to be combined with multiple field plates [4] in order 
to minimize dynamic RON under high drain bias (VDS) 
switching. In addition, it still remains challenging to obtain 
low leakage and low current collapse simultaneously.  

Recently, a novel solution that is able to reduce 
dynamic RON increase after high OFF-state VDS stress up to 
200 V with 4-nm AlN passivation grown by plasma-
enhanced ALD was proposed [5]. This approach is simpler 
and more cost effective compared to the use of multiple 
field plates since fewer process steps are required. However, 
the 4-nm AlN is too thin to satisfy the requirements of 
moisture resistance and the possible implementation of field 

plate structures in high-voltage AlGaN/GaN HEMTs. 
Moreover, deposition of thicker films by the ALD 
technique is impractical due to the slow deposition rate. 
Therefore, a new passivation structure consisting of an 
AlN/SiNx stack, with 4-nm AlN deposited by PEALD and 
50-nm SiNx deposited by PECVD is developed in this work. 
Both reduced current collapse (or dynamic ON-resistance) 
and low OFF-state leakage current are achieved 
simultaneously.  

 

Si Substrate

GaN Buffer

AlGaN BarrierS

2DEG

D
SiNx

AlN 
G

F

 
 
Fig. 1: (a) Cross-section of an AlGaN/GaN HEMT with 
AlN/SiNx passivation. The AlGaN/GaN hetero-structure 
includes a 21-nm AlGaN barrier and a 3.8-µm GaN buffer 
layer grown on a p-type Si (111) substrate. The T-shape 
gate features a 1-µm gate footprint and 0.5-µm extension to 
both sides on top of SiNx. 

DEVICE FABRICATION 

The AlGaN/GaN-on-Si hetero-structure used in this 
work consists of a 21-nm AlGaN barrier and a 3.8-µm GaN 
buffer layer grown on a p-type Si (111) substrate. In Fig. 1, 
the cross-sectional schematic of the device structure is 
illustrated. Source/drain ohmic contacts were first formed 
with Ti/Al/Ni/Au metal stack annealed at 850°C for 30 s in 
N2 ambient. Then a 4-nm AlN was deposited by plasma 
enhanced ALD (PEALD) with in-situ remote plasma 
pretreatment, followed by deposition of 50-nm SiNx by 
PECVD. Planar device isolation was then realized by multi-
energy fluorine ion implantation. The gate window was 
opened by ICP-RIE dry etching of the AlN/SiNx stack layer. 
At last, the T-shape gate was formed by e-beam evaporation 
of Ni/Au followed by liftoff.  

RESULTS AND DISCUSSION 

Device dc electrical characteristics are illustrated in 
Fig. 2. The AlN/SiNx-passivated HEMTs with a gate-drain 
spacing of 15 µm deliver an ON/OFF current ratio higher 
than 108 and a steep subthreshold slope of 63 mV/dec with 
VDS fixed at 5 V, indicating excellent gate control of the 
2DEG channel. The threshold voltage Vth is extracted to be 

mailto:zhikaitang@ust.hk
Lynn
Typewritten Text
17 Student



−3.2 V (@ IDS = 1 µA/mm). The maximum drain current 
reaches 900 mA/mm, while the OFF-state drain leakage is 
below 2 nA/mm at VDS = 5 V and VGS = −5 V. The 
OFF-state breakdown behavior of an AlN/SiNx-passivated 
HEMT with a specific ON-resistance of 1.3 mΩ∙cm2 is 
shown in Fig. 3. The device was biased at VGS = −5 V and 
the substrate was grounded during the measurement. A 
breakdown voltage of 632 V is achieved at a drain leakage 
current of 1 µA/mm, which leads to a high figure of merit 
(FOM = BV2/Ron, sp) of 310 MW∙cm2. 
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Fig. 2: dc I-V characteristics of an AlN/SiNx-passivated 
HEMT with a gate-drain spacing of 15 µm. (a) Transfer 
curves measured with VDS fixed at 5 V and VGS sweeping 
from 2 V to −5 V. (b) Output curves measured with VGS 
stepped from 2 V to −4 V in steps of −1 V. 
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Fig. 3: The OFF-state breakdown characteristics with 
VGS = −5 V and the substrate connected to the ground. A 
breakdown voltage of 632 V is achieved at a drain leakage 
current of 1 µA/mm at VGS = −5 V and VSub = 0 V, for a 
device with LGD = 15 µm and an Ron, sp of 1.3 mΩ∙cm2.  

The on-wafer switching characterization was carried 
out from various OFF-state VDS stress (up to 650 V) to 
evaluate the current collapse of the AlN/SiNx-passivated 
devices. For VDS stress < 200 V, the measurement setup is 
the same as that in [5], with a switching interval of ~100 ms. 
For VDS stress > 200 V, a resistor of 100 kΩ is connected in 
series with the DUT to the drain terminal for the purpose of 
over-current protection. In the OFF-state, VGS is fixed at 
−5 V whereas VDS sweeps from 118 V to 650 V. In the 
ON-state, VGS and VDS are biased at 1 V and 1.2 V, 
respectively, corresponding to an ON-state current of 
~120 mA/mm [Fig. 4(a)]. As shown in Fig. 4(b), though the 
dynamic RON increases with higher VDS stress, it is only 
1.58X the static RON at OFF-state VDS stress of 650 V, 

suggesting effective suppression of current collapse by 
AlN/SiNx passivation. The static RON is extrapolated in the 
linear region of the ID-VDS curve with VGS = 1 V as 
reference. The OFF-ON switching interval is determined to 
be ~2.7 s (limited by the measurement equipment− Agilent 
B1505A power device analyzer) by monitoring the 
waveforms of VGS and VDS during the transient I-V 
characterization. 
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Fig. 4: (a) On-wafer transient switching characteristics of 
an AlN/SiNx-passivated HEMT with LGD = 15 µm. The 
substrate was connected to the ground during the 
measurement. (b) Dynamic RON/Static RON with various 
OFF-state VDS stress from 50 V to 650 V in steps of 50 V. 
The static RON is extrapolated in the linear region of the 
ID-VDS curve with VGS = 1 V as reference. 

CONCLUSIONS 

A new passivation structure of an AlN/SiNx stack 
for high-voltage AlGaN/GaN HEMTs is demonstrated. 
Current collapse suppression during high voltage 
transient switching and low OFF-state leakage were 
realized simultaneously in high-voltage AlN/SiNx-
passivated HEMTs without using multiple field plates. 
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ACRONYMS 

HEMTs: High Electron Mobility Transistors 
2DEG: Two-Dimensional Electron Gas 
RF: Radio Frequency 
PEALD: Plasma-Enhanced Atomic Layer Deposition 
PECVD: Plasma-Enhanced Chemical Vapor Deposition 
ICP-RIE: Inductively Coupled Plasma Reactive Ion Etching 
DUT: Device-Under-Test 
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