Developing Power Amplifier Module Standards for Reliability Qualification

William J. Roesch
TriQuint Semiconductor, Inc., 2300 N.E. Brookwood Parkway, Hillsboro, Oregon 97124-5300
Phone: (503) 615-9292 FAX: (503) 615-8903 EMAIL: broesch@tqs.com

Background: At JEDEC JC-14.7 meetings over the past twelve years, reliability professionals working with Compound Semiconductors have been discussing an appropriate “JEDEC Standard” for laminate-based Power Amplifier Modules that are currently utilized in cell phones (and any other related volume application for this style of module). In the past, the discussions have compared standard qualification requirements from leading manufacturers and several customers.[1] The requirements are similar from supplier-to-supplier and from customer-to-customer. In the past five years, a Task Group within the Committee for Compound Semiconductor Reliability and Quality (JC-14.7) has been addressing various questions about developing standards, and this work is intended to document the progress and publicize the developments.

2.0 WHY NEW COMPOUND SEMICONDUCTOR STANDARDS?

Following are a few of the reasons for new PAM standards that have been discussed by the Task Group… [2]

A. Consolidate “standard” overall qualification tests, so that all the suppliers and customers can combine efforts and reduce the number of “special” requirements and variants requested by each company. These new requirements would be differentiated from existing documents because of significant differences in 1) incorporated CS technologies, 2) materials, 3) packaging, 4) mechanisms, and 5) the PAM application.

Originally, PAMs had a natural fit with many aspects of JESD26 (General Specification for Plastic Encapsulated Microcircuits for Use in Rugged Applications). But when JESD26 was rescinded in 2001, the only alternative was the more generic JESD47. Basically, a new set of PAM-oriented qualification tests could be accomplished as…

i. a whole new JESD47-type document specifically for PAMs (COMMITTEE LETTER BALLOT JC-14.7-12-094). This can be thought of as a replacement of the package-specific qualification of JESD26 with special consideration of the “Telecom Hand Held” application-specific considerations that are modeled in JESD94, or

ii. a special set of tables for PAMs that blends unique aspects of Table 1a (nonvolatile memory devices) and Table 2 (Qualification tests for components in nonhermetic packages) as in JESD47.

B. Specific methodology specification(s) to define special test method(s) applicable to PAMs? (Similar to any part of JESD22)

i. For example, an RF biased lifetest document to describe the necessary requirements of applying RF and temperature acceleration. (JESD226)

ii. For example, an unbiased humidity test at conditions such as 85/85 . . .

a) As an alternative to the humidity saturation and pressure experienced in Autoclave.

b) As an alternative to the higher temperatures and pressures of Unbiased HAST.

iii. For example, a special “slow” or “gentle” thermal cycling test to alleviate the pyroelectric failure mechanism generated by fast excursions on SAW components. (JESD22-A104)

iv. For example, a special “position paper” or “white paper” such as JEP155 to describe ultra ESD sensitivity of PAMs.

v. For example, a new HALT-type combination test involving vibration and thermal stress using continuous monitoring during aging.

C. A document (Similar to an addition to JEP122 and JESD94) to specifically address different failure mechanisms of PAMs such as:

i. Unique failure mechanisms for compound semiconductors:

1) HBT Recombination Enhanced Defect Reaction (REDR)

2) HBT Kirk effect Induced Breakdown (KIB)

3) HBT Safe Operating Area (SOA) emit-collector degradation

4) HBT Gradual B drift

5) pHEMT Sinking Gate

6) GaN Reverse Piezoelectric Effect (RPE)
ii. PAM differences in common failure mechanisms, such as unique
N and Ea factors (used in JEP122 and JESD94) for CS
components in PAMs. e.g. the “Peck power law model” used
for corrosion uses \(N\) as an exponent of Relative Humidity
and \(E_a\) is the activation energy of the Arrhenius expression
such that all acceleration in humidity is based upon \(N=2.66\)
and \(E_a=0.79\text{eV}\) for Aluminum Corrosion per silicon history.

iii. Sub-component failure mechanisms unique to PAMs, such as
1) Pyroelectric Damage (lithium niobate and lithium tantalate)
2) Acoustomigration on resonators and reflectors
3) Mass Loading due to moisture or surface contamination

3.0 RANKING THE ISSUES
Based upon inputs from participating companies, the top areas the
JC-14.7 (Compound Semiconductor) Task Group selected were:

FIRST = RF biased lifetest document to describe the necessary
requirements of applying RF and temperature acceleration. (Committee
Letter ballot JC-14.7-12-093) Published in 2013 as JESD229.
SECOND = A special standard similar to JESD26 and JESD47 with
focus on PAMs and unique differences and special requirements with
special consideration of Compound Semiconductors. (Committee Letter
Ballot JC-14.7-12-094). Approved for re-ballot by JC-14.3 on September
THIRD = Quantifying PAM differences in failure mechanisms and
acceleration factors, (similar to JEP122) for both common mechanisms
and unique Compound Semiconductor mechanisms. This will require
basic science work and publication of results. This area was tabled by the
task group until the first two aspects above are established and the
research can be completed and published to maintain a synergy of
applicability between the three document types.

4.0 PRELIMINARY DISCUSSIONS AND PROGRESS
4.1 RF Biased Lifetest. No one argued that DC bias and RF bias
are different in many respects. Specific comparisons between DC
bias and RF bias are summarized by a publication. \(^\text{[6]}\) JESD226 has
own been published, but temperature is not the only consequence of
applying RF bias. The task group anticipates more RF
considerations. The peak voltages and currents are likely to have
particular accelerating effects that are different than constant DC
bias. Many Power Amplifier Modules (PAMs) employ circuitry for
different bands and for different power levels – how should each be
exercised in an RF biased lifetest? Additionally, the interactions of
temperature, voltage, and current have many permutations to be
considered. There is a lot of operational space between applying a
sine wave on one input and operating a device “like it runs in a
phone.” Various questions need to be settled to help define the
subsequent methodology and operational details. (RFBL = RF
Biased Life). Following are some of the open questions . . .

A. Does RFBL replace HTOL, or is RFBL an additional test to HTOL?
B. Is RFBL intended to stress thermal and electrical mechanisms as well as
all the interactions between temperature and RF bias?
C. Will RF power or temperature be maximized? (which has priority?)
D. Will coverage of nodes operated or the similarity to operating bias be
maximized?
E. Is RFBL expected to be monitored during testing, or is it allowed to
measure performance during intervals where RF bias is removed?
F. Is preconditioning required?
G. Is burn-in or pre-selection of samples allowed?
H. How is power control to be evaluated? For example, what features of the
application need to be considered besides frequency and power level?

I. Should the operational conditions be evaluated to determine the
conditions of maximum power dissipation within the PA or maximum
peak temperature?
J. Is there an applicable RF bias test that is applicable to individual
components utilized within the module, or is RF bias only applicable
to the fully assembled module?
K. How should mismatch (SWR) loading aspects be considered and
overlayed in addition to RF input parameters?

The task group elected to start with a basic stress method document
to introduce RF stress and refine the methodology based upon
findings regarding the above questions. This basic outline document
was published as JESD226 in February 2013.

4.2 Special Qualification Requirements for PAMs. This is the
original Module topic professionals began discussing in the JEDEC
committee almost 12 years ago. Every manufacturer seems to have a
unique set of tests that are “necessary” for qualification. However,
most customers also have a unique set of qualification requirements
as well. In order to conduct business with multiple customers, the
list of qualification tests quickly expands to a superset of methods,
durations, conditions, and sample sizes that becomes prohibitive to
complete in terms of time and cost.

The initial strategy for qualification was to define a fundamental set
of qualification requirements and then personalize the requirements
to the unique aspects of PAMs. The aspects include 1) application
specific modeling per JESD94, 2) compound semiconductor and
filter technologies, 3) materials, 4) mechanisms, and 5) packaging
differences as determined in part 4.3.

4.3 Power Amplifier Failure Mechanisms. The task group
recommended starting with humidity induced failure mechanisms
involving corrosion shorts and opens. One difference between
Compound Semiconductors and silicon devices seems to be in moist
environments. There are certainly special challenges for laminate-
based modules in traditional humidity testing. JEDEC has recently
introduced unbiased versions of HAST methods and labeled
Autoclave as “not recommended” for silicon technology. These
differences beg the question of an appropriate accelerated test for
modules that incorporate compound semiconductors and acoustic
filters in humid environments. There have been several compound
semiconductor publications which have investigated thermal and
humidity acceleration – and those publications suggest some
significant differences from silicon, particularly for mechanisms on
compound semiconductor and acoustic filter technologies. \(^\text{[3,4,3]}\)
The detailed mechanisms have not been explained in these
references, so the published science is somewhat lacking here. It has
been proposed to utilize JEP122 as a template to identify and
expound on the differences. So far, there is not an industry
consensus on the “proper” activation energy for compound
semiconductors in humidity. Perhaps there are more failure
mechanisms at work than the two generalized in the description
above (opens and shorts). So far, there is better agreement on the
“Peck RH exponent,” albeit much higher than reported for silicon
device. The following table compares these two acceleration factors
as defined in JESD94 and recent publications on GaAs technologies
used in Power Amplifier Modules...
Table 1. Comparison of Humidity Acceleration Factors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation Energy</td>
<td>0.79 eV</td>
<td>0.9 eV</td>
<td>1.7 eV</td>
<td>2.08 eV</td>
<td>0.28 eV</td>
</tr>
<tr>
<td>Peck RH Exponent</td>
<td>-2.66</td>
<td>-3.0</td>
<td>-10.7</td>
<td>unknown</td>
<td>-11.4</td>
</tr>
</tbody>
</table>

The committee has worked to develop a “matrix” to compare all participating supplier’s standards to participating customer’s requirements, but so far, this has not resulted in consolidation.[1] It’s unclear what method is appropriate to derive the “best” list of qualification tests? In the beginning, suppliers requested a “standard” to reduce the proliferation of tests and conditions, so as to streamline qualifications in both time and cost. [6] However, customers have a different idea of standardization, such as a suite of tests to minimize reliability risk, maverick excursions, and early failure mechanisms – particularly for laminate-based modules.

5.0 Remaining Work.
The Task Group is continuing to investigate findings, models, and issues to address the concerns selected in Section 3. Design of specific test structures and validation from independent laboratories have also been suggested for further investigation. [7]

New precedents in cooperation have just been established between Silicon-based and Compound Semiconductor-based committees within the JEDEC organization which resulted in agreement onballoting a PAM Reliability Qualification Standard. With the completion of a PAM Reliability Qualification Standard imminent, work can now begin to identify and characterize specific failure mechanisms and to refine a set of requirements that are tuned specifically to the unique aspects and applications of Power Amplifier Modules as described in Section 4. The culmination of this development will be a streamlined qualification that addresses specific traits (described in Section 2) of PAMs and the Compound Semiconductors that are typically enabling the performance consumers have grown to expect in their smart phones and wireless devices.

If selected for publication and presentation at the CS MANTECH conference, the history as described in this abstract will be provided and the arguments and data used to establish the new precedents will be showcased.

6.0 REFERENCED JEDEC DOCUMENTS:
These are available from the JEDEC website . . .

JESD47 STRESS-TEST-DRIVEN QUALIFICATION OF INTEGRATED CIRCUITS
JESD22-A101 STEADY-STATE TEMPERATURE HUMIDITY BIAS LIFE TEST:
JESD22-A102 ACCELERATED MOISTURE RESISTANCE - UNBIASED AUTOCLAVE:
JESD22-A104 TEMPERATURE CYCLING
JESD22-A110 HIGHLY ACCELERATED TEMPERATURE AND HUMIDITY STRESS TEST (HAST)
JEP155 RECOMMENDED ESD TARGET LEVELS FOR HBMM QUALIFICATION
JEP122 FAILURE MECHANISMS AND MODELS FOR SILICON SEMICONDUCTOR DEVICES
JESD94 APPLICATION SPECIFIC QUALIFICATION USING KNOWLEDGE BASED TEST METHODOLOGY
JESD226 RF BIASED LIFE (RFLB) TEST METHOD

7.0 REFERENCES