Wafer-Level Packaging and Wafer-Scale Assembly Technologies

May 17, 2010
CS MANTECH Workshop 6
Portland OR

Patty Chang-Chien
Northrop Grumman Aerospace Systems
Acknowledgement

- Multi-center effort at NGAS: Microelectronics, RF Product Center, Manufacturing, Product Engineering, Materials, Antenna Product

- Kelly Hennig, Xiang Zeng, David Eaves, Phil Hon, Peter Chou, Gerry Mei, Roger Tsai, David Farkas, John Chen, Keang Kho, Mike Battung, Yun Chung, Pei-Lan Hsu, Jeff Yang, Wendy Lee, Matt Nishimoto, Tony Long, Greg Rowan, Sean Shih, Dah-Wei Duan, Jose Padilla, Pin-Pin Huang, Minhdao Truong, Richard To, K.K. Loi, Hui Ma, Jeremy Ou-Yang, Craig Geiger, Gershon Akerling, Chi Cheung, Sujane Wang, Jane Lee, Danny Li, Peter Nam, Peter Ngo, Martin IIyama, Ging Wang, Tom Chung, Gary Gurling, Randy Duprey, Cesar Romo, Ben Heying, Randy Sandhu, Ben Poust, Matt Parlee, Denise Leung, David Eng, Eric Kaneshiro, Rich Kono, Jansen Uyeda, Mike Barsky, Jennifer Gan, Ke Luo, Fred Dai, Edna Yamada, Mike Wojtowicz, Rich Lai, Augusto Gutierrez, Aaron Oki and many more!
Agenda

• Overview
 – Technology description
 – Benefits

• 2-Layer WLP/WSA
 – Process description
 – Examples

• Interconnects & Transitions

• Package Performance

• Multi-Layer WLP/WSA
 – Process description
 – Examples

• Higher Order Integration
What is Wafer-Level-Packaging?

Wafer-Level Packaging (WLP)
AKA: Micro Packaging
AKA: Wafer-Scale Assembly (WSA)

- Add inter-cavity interconnects and cavity ring
- Stack and bond multiple wafers, then dice
- Forms a hermetically packaged 3-D integrated circuit
- Enables integration of different MMIC technologies

WLP provides low cost, high volume, hermetic packaging
Advanced Capabilities for Next-Generation Systems

- Next-generation system needs performance superiority & affordability

- WLP ⇒ performance superiority
 - Advanced integration
 - best semiconductor technology for the function
 - Ultra-compact, light weight packaging
 - size & weight savings
 - High functional density & low loss interconnects
 - Superior circuit performance
 - Hermetic MMIC packaging
 - Enhanced circuit reliability

- WLP ⇒ Affordability
 - Batch fabrication processes
 - Low cost, high volume
 - Fully compatible with NGAS MMIC production processes
 - Existing & proven MMIC technologies
 - Next-generation MMIC technologies
 - Reduce higher order assembly cost, relax module assembly requirement
WLP Benefits

- **Superiority**
 - Hermetic compact MMIC packaging
 - Performance enabler
 - High functional density
 - Superior circuit performance

- **Affordability**
 - Batch fabrication processes, low cost, high volume
 - Reduce higher order assembly cost, relax module assembly requirement

<table>
<thead>
<tr>
<th></th>
<th>Integrated Microwave Assembly (IMA)</th>
<th>Wafer-Level-Package (WLP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size reduction</td>
<td>1</td>
<td>1,000X</td>
</tr>
<tr>
<td>Weight reduction</td>
<td>1</td>
<td>1,000X</td>
</tr>
<tr>
<td>Cost reduction</td>
<td>1</td>
<td>10-100X</td>
</tr>
</tbody>
</table>

Heterogeneous Integration using WLP

Combine multiple MMIC wafers by wafer bonding technology

Tri-layer WLP TR Module
X-band operation
Mass: <15mg
Size: 2.5mm x 2mm x 0.46mm
WLP content: 3 bit PS, LNA, PA

WLP offers superiority in performance and affordability in cost
Integrated Microwave Assembly Packaging

GaAs

InP

GaN

CMOS

IMA
Wafer-Level Integration Benefits

- Hermetic
- Ultra-light weight, ultra-compact
- Low cost, high volume
- Performance enhancement

IMAs
- Weight: g to >1000g
- Size: cm x cm x cm
- Assembly: serial, manual

Wafer-Level Integrated Package
- Weight: < 50 mg
- Size: mm x mm x mm
- Assembly: mass parallel, wafer scale
Integration Using Wafer-Level Packaging

- WLP is assembled using a low temperature wafer bonding process
- WLP technology is fully compatible with NGAS MMIC production processes

Low temperature wafer bonding process is key to MMIC compatible, robust WLP
2-LAYER WLP
2-Layer WLP

- Wafers are individually processed prior to bonding
 - No changes to standard MMIC processes

- ICIC = Intra-Cavity InterConnections

- BICIC = Backside ICIC

2-layer Bonding Process Flow

2-Layer WLP is constructed by bonding 2 individually processed wafers
WLP Demonstrations

- WLP is fully compatible with NGAS’s MMIC production processes

Frequency bands w/ WLP

- X-band
- Ku-band
- V-band
- Ka-band
- Q-band
- W-band

Different circuit types w/ WLP

- LNAs
- Oscillators
- Shift registers
- PAs
- Phase shifters
- Switches

Different compound-semiconductor technologies w/ WLP

- InP HEMTs
- ABCS HEMT
- MEMS switches
- Passives
- GaN HEMTs
- InP HBTs
- GaAs HEMTs
- GaAs HBTs
- GaAs Schottky diodes
- InP diodes

Substrate combinations w/ WLP

- GaAs + GaAs
- InP + GaAs
- InP + InP
- Quartz + Quartz
- Si + InP
- Glass + Glass
- GaAs + Duroid
- GaAs + InP + GaAs
- GaAs + InP + InP
- SiC + SiC
- Multiple GaAs integrations
- Multiple InP integrations

NGAS has extensive experience in heterogeneous integration using WLP
Examples of Packaged MMICs

Ku Band PA, WLP GaAs HEMT circuit

Ku Band LNA, WLP GaAs HEMT circuit

Q-Band LNA, WLP GaAs HEMT Circuit

W-Band PA, WLP GaAs HEMT circuit
Wafer Level Packaging (WLP) MMICs Proven across the bands

KU
- 4-bit PSHH
 - Chip size: x=3.3mm, y=2.7mm
 - TTL compatible
 - avg RMS Amp Error=1.08dB
 - avg RMS Phase Error=16.5º
- 2-Stage, self-biased LNA
 - Chip size: x=3.3mm, y=2.7mm
 - Bias: 4V, 26 mA
 - Gain > 26.5 dB at 16 GHz

KA
- 2-Stage PA
 - Chip size: x=3.3mm, y=2.7mm
 - Bias: 4V, 120 mA
 - Gain > 19 dB at 16 GHz
- 3-Stage, self-biased LNA
 - Chip size: x=4.2mm, y=4.2mm
 - Bias: 4V, 45 mA
 - Gain > 24 dB at 35 GHz

Q
- 3-Stage, self-biased LNA
 - Chip size: x=4.2mm, y=4.2mm
 - Bias: 4V, 60 mA
 - Gain > 11.8 dB from 30-50 GHz

Miniaturized WLP T/R modules for large arrays
GaN WLP Technology

- Developed world’s first GaN wafer level package process for record power density
- Demonstrated >99% GaN WLP interconnect yield
W-Band WSA Oscillator

- W-Band oscillator with built-in on chip resonant cavity
- 2-layer active MMIC integration:
 - InP HEMT + GaAs HBT

Measured spectrum of Oscillator

Photo of the integrated oscillator chip
Comparison of WLP and non-WLP circuits

RF performance similar for WLP and non-WLP circuits
2-LAYER INTEGRATED WLP/WSA EXAMPLES
Heterogeneous Integration Example

- Integrated RF front end module with antenna
 - Amplifier (GaAs HEMT)
 - 3 bit phase shifter (GaAs HEMT)
 - Interconnections (ICICs)
 - Antenna
On-Wafer Measured Data

- WLP technology
 - Wafer1 = passive, 4-mil GaAs
 - Wafer2 = 0.1um, 4-mil GaAs
- 2-stage balanced Amplifier
- 3-bit reflective phase shifter

Amplifier S-Parameter

Phase Shifter Phase States

- Frequency (GHz)
- Magnitude (dB)
- Phase (deg)
- Phase States
WLP Linear Array Demonstration

- Demonstrated fully functional front-end modules with a linear 4-element array
 - GaAs HEMT + passive
 - Amplifier + 3bit PS + antenna in an integrated Q-Band WLP package
 - Successful integration to BFN board
 - Demonstrated electronic beam steering

Integrated RF front-end modules w/ antenna

Measured Beam Pattern

Integrated RF front-end modules w/ antenna

Beam Forming Network (board)

WLP bottom side

WLP top side (antenna)
INTERCONNECTS & TRANSITIONS
RF ICICs

- RF ICIC 50 Ohm Coaxial Transition
- Designed to provide minimal mismatch between 50 Ohm microstrip line (wafer 1) and 50 Ohm CPW line (wafer 2)

Measured Data from RF ICIC Structure
(2 RF ICIC transition + thru line)

Demonstrated Low Loss, RF ICICs
Low Loss RF Vias

- RF via transitions
 - Low loss up to 50GHz
 - <0.1dB insertion loss up to 30GHz

- DC interconnects
 - > 99% yield

- Calibration structures
 - To ensure accurate measurement

Demonstrated Low Loss RF Vias for WLP devices
High Frequency RF Interconnects

- First-of-a-kind W-band WLP RF interconnect
 - Insertion Loss < 0.2 dB
 - Return Loss > 20 dB
 - 20 dB isolation

Demonstrated Low Loss, High Isolation
W-Band WLP Interconnects
Isolation Using Ground Fence

- Isolation fence can be built using 3D interconnects within WSA
- Demonstrated 30dB isolation improvement in W-band using ground fence
- 3D WSA offers design flexibility and performance improvement

Simulated Isolation Fence Response

Measured Isolation Fence Response

Blue: no via fence
Red: with via fence

RF Isolation Design For WSA MMIC
PACKAGE PERFORMANCE
WLP chips **Passed** the many military standard tests:

- **Vibration-Sine**
 - MIL-STD 883F, Method 2007.3, condition B
- **Mechanical Shock (Pyroshock)**
 - MIL-STD 883F, Method 2002.4, condition B
- **Die Shear**
 - MIL-STD 883F, method 2019.7
- **Temperature Cycling**
 - MIL-STD 883F, Method 1010.8, condition B
 - -55°C to 125°C, 50 cycles, MEMS
 - -55°C to 85°C, 300+ cycles, W-Band GaAs circuits
 - -55°C to 125°C, 500 cycles, GaAs PA
- **Hermeticity**
 - MIL-STD 883F, Method 1014.11
 - He fine leak, condition A2, flexible
 - Radioisotope fine leak, condition B
 - Penetrate dye gross leak, condition D

Environmental test: 85°C 85% humidity 7 days Ku band GaAs MMICs

WLP packages are hermetic, thermally and mechanically robust
Thermal Robustness

- 24 to 40 GHz GaAs HEMT LNA
- Thermal cycling, -55°C to 125°C
- 500+ cycles

Measured s_{21} response as function of thermal cycles
MULTI-LAYER WLP/WSA
Advanced Integration: Multiple Layer WLP

- Example: 4-layer construction
 - Use bonded pair as starting units

Multiple Layer WSA Flow

Bonded Pair 1

Bonded Pair 2

or single wafer

Process Bonding
layer if necessary (backside)

Wafer Bonding

4-layer Bonding Process Flow

Bonded Pair 1

Bonded Pair 2

ICIC (Front side)

BICIC (backside)

Bonding Layer

4-Layer Construction is Achieved By Bonding 2 bonded WLP pairs
X-Band Tri-Layer Tx/Rx Modules

Average mass: 12.9mg
Size: 2.5mm x 2mm x 0.46mm

• Next-Generation Large Aperture Array T/R Module
 – Ultra light weight (<15 mg)
 – Extremely compact (<5 mm²)

• Transceiver Module Performance
 – FOM > 10,000
 – Reliability: MTTF > 10⁶ Hours
Tri-Layer T/R Demo

- Tri-layer T/R module demonstration
 - GaAs HEMT + InP HBT + InP HEMT
 - Demonstrated excellent yield and T/R circuit performance

Measured NF (Rx) of the tri-layer WLP T/R module
CMOS + III-V Integration Demo

Input Digital CTRL Waveform

Measured Phase Shifter Data

Demonstrated heterogeneously integrated CMOS flip-chip to WLP MMICs
HIGHER ORDER ASSEMBLY
WLP Higher Order Integration Demonstrations

<table>
<thead>
<tr>
<th>Fixture</th>
<th>Alumina</th>
<th>Organic Board</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assembly
- Technologies integrated
 - GaAs-GaAs
 - GaAs-InP
 - InP-InP
 - ABCS-InP-GaAs

- Techniques demonstrated
 - Epoxy to Fixture/Board
 - Bump to Board
 - Manual
 - Auto assembly

Demonstrations
- CMOS to III/V Integration
- Direct WLP to Board Attach
- 16-element Ku-band Rx Array
- 8-element Ku-band Rx Sub-Array
- 4-element Q-band Tx Array

Benefit
- SWaP reduction
- SWaP, cost reduction
- Near term insertion
- Design to manufacturing
- mmW array implementation

Demonstrated WLP-to-Board Integration
Microbump: Chip-Board Integration

- Developed microbump technologies for WLP-to-board attachment and integration

Microbumps on backside of the package

Sn/Pb microbump array

Cu stud microbump

Microbumps enable direct WLP-to-Board Integration
Direct Board Attach Using Microbumps

X-ray result showing good board to chip interface

Excellent Chip-to-Board Microbump Interface
Example of Epoxy Attach and Ribbon Bonds Implementation

Ku Band subarray board with WLP chips

Integrated Subarray Antenna Board

WLP modules

5 WLP MMIC fixture for environmental testing

WLPs are compatible with epoxy attachment
WLP on Interposer Boards on PWB

Front Side: WLP on Interposer

Back Side (Solder Ball)
WLP on Interposer

WLP Interposer board attachment to PWB
Higher Order Integration Using WLP/WSA

- Demonstrated thermal cycling robustness of WLP-board assembly with underfill
 - >200 cycles
 - from -40C to 100C
 - Pass without failure

- Successfully demonstrated dual side WLP chip-to-board attachment

Chips on the front side of PWB after backside assembly

Chips on the backside of PWB
Summary

- WLP technology offers performance superiority and affordability for next-generation systems
- WLP offers significant size, weight and cost savings for future systems
- Demonstrated multiple advanced technology integration with WLP
- Verified robustness of WLP packaging by MIL-STD tests
- Demonstrated WLP integrated MMICs & modules across the bands
- NGAS is committed to mature and improve wafer-scale integration technology for system insertion