The Effects of Gate Metals on the Performance of p-GaN/AlGaN/GaN High Electron Mobility Transistors
Finella Lee, Liang-Yu Su, and JianJang Huang*
Graduate Institute of Photonics and Optoelectronics and
National Taiwan University, Taipei 106, Taiwan
Phone: 886-2-3366-3665, Fax: 886-2-2367-7467, email: r01941022@ntu.edu.tw, jjhuang@ntu.edu.tw

Keywords: HEMT, gate metal, breakdown voltage

Abstract
The impact of different gate metals- Ni/Au, Ti/Au and Mo/Ti/Au on the performance of p-GaN/AlGaN/GaN high electron mobility transistors (HEMTs) are investigated in this work. Compare to Ni/Au-gate HEMTs, the devices with a Mo/Ti/Au gate can improve 32% of the breakdown voltage with a trade-off of reducing 11% of operating current at L_GD=6um. We also demonstrated a noticeable high breakdown voltage of more than 1600V of Ni/Au- and Mo/Ti/Au-gate p-GaN/AlGaN/GaN HEMTs.

INTRODUCTION
Currently, gallium nitride (GaN) based high electron mobility transistors (HEMTs) have been promising candidates for high-power electronic applications due to their excellent properties, such as high breakdown voltage, high switching frequency, and good thermal stability. Several approaches are applied in order to realize E-mode AlGaN/GaN HEMT devices, for instance, using the p-type cap layer[1], metal-insulator-semiconductor (MIS) structure[2], the fluoride-treatment[3] and so on.

Among the above technologies, p-type GaN HEMTs have the advantage of good controllability of threshold voltage (Vth). Although most of literatures on p-type gate GaN HEMTs demonstrated Ni/Au gate metal, there are much more choices of gate metals for p-GaN cap HEMTs than conventional HEMTs since most of the metals have adequate work function difference comparing to p-GaN. Therefore, other metals can be utilized to promote the performance of GaN HEMTs, such as an increase of the Vth or saturated drain currents.

In this work, p-GaN/AlGaN/GaN HEMTs with different gate metals including Ni/Au, Ti/Au and Mo/Ti/Au were studied. The influences of gate metals on the currents, I DS, and breakdown voltages were investigated. We conclude that saturated drain currents involve a trade-off with not only the Vth but also the breakdown voltages. Noticeable high breakdown voltages of 1600V were also demonstrated in Ni/Au- and Mo/Ti/Au-gate HEMTs.

DEVICE FABRICATION
The epi-structure was grown on a Si(111) substrate by metal organic chemical vapor deposition (MOCVD). The layers were composed of a 2.4μm buffer, a 1.2μm GaN, a 10nm Alx0.25Ga0.75N barrier and a 60nm Mg-doped p-type GaN layer. The active p-GaN doping density, intended to deplete the two-dimensional electron gas (2DEG) carriers at the AlGaN/GaN interface, ranges from 1x1018 to 2x1018 cm⁻². The process was started from defining the mesa area by inductively coupled plasma reactive ion etching (ICP-RIE). Then, the p-GaN layer except the gate contact region was etched by ICP-RIE with Cl2/BCl3. For source and drain contacts, Ti/Al/Ni/Au was evaporated by e-gun metal evaporator and alloyed at 900°C for 30s by rapid thermal annealing (RTA). Afterwards, Ni/Au- and Ti/Au-gate metals were deposited by e-gun metal evaporator for each HEMTs, while Mo was sputtered on a Ti/Au thin film deposited by e-gun metal evaporator. The gate-source (LGS), gate length (Lg), gate–drain offset length (LGD) and gate width is 2, 4, 6 and 50μm, respectively.

RESULTS AND DISCUSSION
We demonstrated three kinds of gate metal in this work, including Ni/Au, Ti/Au and Mo/Ti/Au. Ni/Au is used widely as a metal gate in the commercial GaN HEMTs. We also utilize Ti/Au as a gate metal in order to investigate the potential of processing S/D and gate simultaneously. Considering the effective Schottky barrier height of as low as 0.8eV for Ti/p-GaN contact[4], Mo was sputtered underneath Ti/Au for the other devices.

Transfer curves of the p-GaN cap HEMTs with three kinds of gate metals were measured to investigate the impact of the gate metal on the Vth, which was defined by the gate bias at a drain current of 1mA/mm. As shown in Fig. 1, the transfer curve of Ni/Au-, Ti/Au- and Mo/Ti/Au-gate HEMTs exhibits the Vth of 2.19V, 1.78V and 2.39V, respectively.

Work function difference between p-GaN and metals, Ni, Ti and Mo, is 2.35, 3.17 and 2.9, respectively. Thus, Vth of HEMTs do not correspond to a theoretical Schottky barrier height of gate metal/p-GaN contact directly. Instead, they are influenced by a real barrier height of Ni, Ti, and Mo/p-GaN contact. Compared with Ni/Au- and Mo/Ti/Au-gate HEMTs, the Vth of Mo/Ti/Au-gate HEMTs is 0.2V higher than this of Ni/Au-gate HEMTs. This result implies that p-GaN HEMTs with a higher real Schottky barrier height of the metal/p-GaN contact have a higher Vth. On the other hand, the Vth of Ti/Au-gate HEMTs is much lower than the other devices due to the smallest effective Schottky barrier height of only 0.8eV of Ti/p-GaN.
The gate to drain region can be regarded as a Schottky barrier diode (SBD) embedded in the HEMT structure. V_{th} can be considered as the approximate turn-on voltage of a p-n diode composed of p-GaN/2DEG. When the p-n diode is on, the depletion region width in 2DEG side reduces and a channel is created. As a result, it is shown that the turn-on voltage of SBDs is closely associated with Schottky barrier height of HEMTs. It indicates that HEMTs cannot achieve a high V_{th} only by having a gate metal with a low work function; alternatively, the high effective barrier height of metal/p-GaN is crucial.

The I_D versus the V_{GS} characteristics for Ni/Au-, Ti/Au- and Mo/Ti/Au-gate HEMTs are shown in Fig. 2 (a), (b) and (c), respectively. At $V_{GS}=10$V, the saturated drain current of Ni/Au-, Ti/Au- and Mo/Ti/Au-gate HEMTs is 218mA/mm, 251mA/mm and 193mA/mm, respectively. The largest saturated drain currents of Ti/Au-gate HEMTs can be attributed to the largest value of V_{GS}-V_{th}.

Besides, the on-resistance obtained from the slope of the I_D-V_D curves for Ni/Au-, Ti/Au- and Mo/Ti/Au-gate HEMT is $19.5 \Omega \cdot \text{mm}$, $15.9 \Omega \cdot \text{mm}$ and $18.1 \Omega \cdot \text{mm}$ when $V_{GS}=10$V. It shows that using Ti/Au as a gate metal can not only decrease the V_{th} but also decrease the on-resistance of a p-GaN AlGaN/GaN HEMT effectively.

The breakdown characteristics for Ni/Au-, Ti/Au- and Mo/Ti/Au-gate HEMTs were also measured, which are shown in Fig. 3. No matter which gate metal is used, the breakdown voltages of HEMTs increased with the length of L_{GD}. While L_{GD} is 6um and 10um, the breakdown voltages of Mo/Ti/Au-gate HEMTs are largest, and this of Ti/Au-gate HEMTs are smallest. It is because that higher barrier height between Mo and p-GaN can effectively restrain the leakage currents when HEMTs are in the off-state. Generally, similar order of off-state current can be obtained from Mo/Ti/Au- and Ni/Au-gate HEMTs, but larger off-state current orders of Ti/Au-gate HEMTs are typically measured, which result in a lower breakdown voltage of Ti/Au-gate HEMTs. When L_{GD} is 16um, the breakdown mechanism is related to buffer leakage, so the breakdown voltages of Ni/Au-is similar to this of Mo/Ti/Au-gate HEMTs. Breakdown voltages of as high as 1600V were demonstrated with the design of 2.4 um buffer and 1.2um GaN.

CONCLUSIONS

P-GaN cap HEMTs with different gate metals were demonstrated in this report. We conclude that gate metal/p-GaN contacts have an impact on the performance of the E-mode HEMTs, such as the V_{th}, output drain currents, breakdown voltages and so on. Compare to Ni/Au-gate HEMTs, the devices with a Mo/Ti/Au gate can improve 32% of the breakdown voltage with a trade-off of reducing 11% of operating current at $L_{GD}=6$um. Moreover, both Ni/Au- and Mo/Ti/Au-gate HEMTs exist noticeable high breakdown voltage up to 1600V when L_{GD} is 16um.

REFERENCES

