Improved Thermal Stabilities in Normally-off GaN MIS-HEMTs
Cheng Liu, Hanxing Wang, Shu Yang, Yunyou Lu, Shenhui Liu, Zhikai Tang, Qimeng Jiang and Kevin J. Chen
ECE Department, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
Phone: +852-23588530, Fax: +852-23581485, Email: cliuad@ust.hk

GaN based power transistors, with the merit of operating at elevated junction/ambient temperature and high switching frequency, are suitable for high-performance compact power converters. For the GaN transistors with metal–insulator–semiconductor (MIS) structure, their high temperature stability can be hindered by the challenges of V_{TH} instability originating from the thermal electron emission of trap states at the dielectric/III-N interface [1,2]. To address this issue, a thinned barrier layer is proposed to bring the deep interface traps below the Fermi level at pinch-off so that they become inactive [2]. In this work, the normally-off MIS-HEMTs featuring a partially recessed (Al)GaN barrier were realized by a fluorine-plasma implantation/etch technique. The partially recessed barrier leads to improved thermal stability, while the fluorine implantation can convert the device from D-mode to E-mode without completely removing the barrier and sacrificing the high mobility heterojunction channel [3].

The schematic cross-section of the normally-off MIS-HEMT is shown in Fig. 1. Both the fluorine ion implantation and gate recess were carried out using CF$_4$ plasma. By properly adjusting the power level of the RF source driving the fluorine plasma, we are able to obtain two desirable results: 1) a well-controlled slow dry etching for gate recess; and 2) effective shallow implantation of fluorine ions into the AlGaN barrier. Fluorine plasma implantation at a higher RF power level of 200 W resulted in a well-controlled slow etching process with an etching rate of 2-nm/min. Meanwhile, a lower RF power of 150 W only induced insignificant etching of the barrier layer [4]. After 6 minutes of F-implantation/etch, a recess depth of ~12 nm and a smooth etched surface were obtained. After removing another 22-nm AlGaN by a digital etching [5], 20-nm Al$_2$O$_3$ was deposited by ALD with an in-situ nitridation process [6].

The proposed MIS-HEMT exhibits a threshold voltage (V_{TH}) of +0.6 V at a drain current of 10 μA/mm, a maximum drive current of 730 mA/mm, an on-resistance of 7.07 Ω·mm (Fig. 2), and a hysteresis of ~0.3 V between the up- and down- V_{GS}-sweep with a relatively fast sweeping rate (0.7 V/s). Three-terminal off-state breakdown measurement of a MIS-HEMT with $L_{GD} = 15 \mu$m yields a breakdown voltage of 703 V at a drain leakage of 1 μA/mm with the substrate grounded (Fig. 3(a)).

Fig. 3(b) shows the temperature (T)-dependent transfer characteristics of a MIS-HEMT. When temperature increases from 25 °C to 200 °C, an increase of 3 orders of magnitude is observed in the OFF-state drain leakage due to increased buffer leakage, while the drain current exhibits an decrease (e.g. from 240 mA/mm to 200 mA/mm at $V_{GS} = 4$ V). By using a current criteria of I_{DS} of 10 μA/mm, V_{TH} shifted by 0.5 V negatively.

The dynamic properties of fabricated MIS-HEMTs were evaluated by high-drain-bias transient switching test and on-wafer hard switching measurement performing at temperature ranging from 25 °C to 200 °C (Fig. 4). A dynamic R_{ON} degradation (\times1.58) for an OFF-state drain bias stress of 600 V (Fig. 5(a)) indicates effective suppression of current collapse for the room-temperature operation of proposed MIS-HEMTs. At elevated temperatures, the degradation of dynamic R_{ON} for V_{DS} stress up to 200 V is suppressed (Fig. 5(b)). During the hard switching test under high-frequency and high-temperature conditions (Fig. 5(c)), the increase of dynamic R_{ON} is less than 18% and shown negligible temperature dependence.

Switching time = 0.1 ~ 1 s

\(R_{on} @ I_{on} > 110 \text{ mA/mm} \)

OFF-state: \(V_{gs} = 0 \text{ V} \)

ON-state: \(V_{gs} = 7 \text{ V}, V_{ds} = 1.2 \text{ V} \)

\(\Delta V_{th} \sim 0.3 \text{ V} \)

\(V_{ds} = 10 \text{ V} \)

OFF-state: \(V_{gs} = -1 \text{ V} \)

ON-state: \(V_{gs} = 6 \text{ V}, V_{ds(on)} = 1.2 \text{ V} \)

\(\Delta V_{th} \sim 0.5 \text{ V} \)

\(V_{gs} = 10 \text{ V} \)

25 °C to 200 °C

25 °C/step