Effect of Gate Threshold Swings by ALD-Al$_2$O$_3$/AlGaN Interfacial Traps in GaN Power HEMT with Multiple Fluorinated Gate Dielectric Layers

Yun-Hsiang Wang1,5, Yung C. Liang1,2,*, Ganesh S. Samudra1,2, Bo-Jhang Huang3, Ya-Chu Liao3, Chih-Fang Huang3, Wei-Hung Kuo4 and Guo-Qiang Lo5

1National University of Singapore, Singapore; 2National University of Singapore (Suzhou) Research Institute, China; 3National Tsing Hua University, Taiwan; 4Industrial Technology Research Institute, Taiwan; 5A*STAR Institute of Microelectronics, Singapore. *Contact author email: chii@nus.edu.sg

Keywords: Threshold Swing, AlGaN/GaN Power HEMT, Normally-off, Fluorine Plasma Treatment, Interfacial Trap

Abstract

This work analyzes the Al$_2$O$_3$/AlGaN interfacial quality of annealing-free device with multiple fluorine plasma treatments within Al$_2$O$_3$ gate dielectric in HEMT which is expected to have good channel conductivity and high V_{TH} at the same time. Benchmarking with devices that underwent pre-fluorination annealing right after 1st layer of Al$_2$O$_3$ deposition, unannealed device has about 10 times lower shallow interface trap density (D_{it}) which resulted in significantly smaller drain leakage current. However, doubled Ultra-violet (UV) -assisted V_{TH} hysteresis (ΔV_{TH}) in bi-directional I_D-V_G sweep measurement indicates higher concentration of deep-level traps without gate stack annealing.

INTRODUCTION

Normally-off AlGaN/GaN HEMT is desirable in power applications in terms of system controllability. Fluorine ion (F^-) treatment [1] and AlGaN barrier recess [2] on the gate region are both approaches to deplete the carriers or weaken the polarization within the normal 2DEG conduction channel in HEMT structure. However, for conventional F^- treatment on AlGaN surface [1], annealing was required after treatment for damage recovery which resulted in the migration of F^- and reduced V_{TH}. Unannealed multiple F^- treatments on AlGaN surface and ALD-Al$_2$O$_3$ gate dielectric combining with partial AlGaN recess reported in [3] allowed high total amount of F^- incorporation at the gate which resulted in a high V_{TH} of +5V.

DEVICE FABRICATION

The HEMT device fabrication on the AlGaN/GaN-on-silicon wafer begins with Ti/Al/Ni/Au (25/125/45/55 nm) ohmic contacts formed by RTA at 850°C for 30s. Then, 500nm-deep mesa isolation is formed by BCl$_3$-based ICP-RIE and 150nm SiO$_2$ dielectric deposition by PECVD. After gate opening, about 10nm of AlGaN (50% in thickness) was recessed by low power BCl$_3$-based ICP-RIE to weaken the polarization and reduce the 2DEG concentration without degrading the AlGaN/GaN 2DEG interface mobility. After 6.5nm of ALD-Al$_2$O$_3$ deposition at 250°C and different post-deposition annealing temperatures for gate recess recovery used on Dies B and C, 3 cycles of CHF$_3$ plasma treatment combining with ALD-Al$_2$O$_3$ were used for gate stack formation to introduce sufficient F^- charges in the gate region for high V_{TH}. Longer treatment period was applied on the top layer to minimize F^- penetration into the 2DEG channel region which may create mobility degradation. Considering the CHF$_3$ plasma etching on Al$_2$O$_3$, the total Al$_2$O$_3$ thickness of 18.1nm is obtained. Detailed device schematics, SEM of the gate cross-section and gate process parameters are shown in Fig. 1 and Table I. The equivalent F^- sheet concentration of each layers was obtained by fitting the measured V_{TH} with Setaurus TCAD simulations.

![Fig. 1 (a) Cross-sectional schematics and (b) SEM image of the fabricated device](image-url)
results. Slight increase of V_{TH} in positive sweep were found with annealing (step 2 in Table I), showing the formation of some fixed negative charge after annealing. Additionally, different degree of positive shift in V_{TH} was observed during negative sweep, indicating trapping of electrons at the $\text{Al}_2\text{O}_3/\text{AlGaN}$ interface or Al_2O_3 bulk after applying high gate bias. Halved ΔV_{TH} was observed after annealing, proving effective reduction in deep-level $\text{Al}_2\text{O}_3/\text{AlGaN}$ interfacial trap charge (Q_{it}). Shown in Table II are Q_{it} values for Die A–C based on Fig. 2(a) along with the Q_{it} values after 10s of UV-illumination (UV wavelength=365nm) to measure even deeper $\text{Al}_2\text{O}_3/\text{AlGaN}$ traps. Q_{it} were extracted according to [4] as shown in Eq. (1). In Eq. (1), $\varepsilon_{\text{Al}_2\text{O}_3}=7$, ε_0 is the permittivity in vacuum, q is the electronic charge and $t_{\text{Al}_2\text{O}_3}$ is the thickness of Al_2O_3 as shown in Table I. The bi-directional I_D-V_G in log-scale and I_G-V_G shown Fig. 2(b) has demonstrated increased drain leakage current under similar gate leakage after annealing.

$$Q_{it} = \frac{\varepsilon_0\varepsilon_{\text{Al}_2\text{O}_3}\Delta V_{TH}}{q t_{\text{Al}_2\text{O}_3}} \quad (1)$$

Table II. Extracted threshold voltage hysteresis and $\text{Al}_2\text{O}_3/\text{AlGaN}$ interfacial trap of Dies A–C.

<table>
<thead>
<tr>
<th>Dies</th>
<th>D-Mode</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TH} in positive sweep (V)</td>
<td>-3.0</td>
<td>4.8</td>
<td>5.4</td>
<td>5.5</td>
</tr>
<tr>
<td>w/o</td>
<td>ΔV_{TH} (V)</td>
<td>0.4</td>
<td>1.4</td>
<td>0.75</td>
</tr>
<tr>
<td>UV</td>
<td>Q_{it} (10^{12} cm$^{-3}$)</td>
<td>0.86</td>
<td>3.01</td>
<td>1.61</td>
</tr>
<tr>
<td>UV for 30s</td>
<td>ΔV_{TH} (V)</td>
<td>0.4</td>
<td>2.0</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Q_{it} (10^{13} cm$^{-3}$)</td>
<td>0.86</td>
<td>4.40</td>
<td>2.72</td>
</tr>
</tbody>
</table>

Table I. Steps for fabrication of Dies A–C.

<table>
<thead>
<tr>
<th>Steps</th>
<th>Process</th>
<th>Dies</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALD-Al_2O_3</td>
<td>6.5 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rapid thermal annealing</td>
<td>N/A</td>
<td>500 °C in N$_2$ for 60s</td>
<td>600 °C in N$_2$ for 60s</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F^- treatment</td>
<td>CHF$_3$ RIE @ 30W for 140s</td>
<td>F^- Conc.\approx -6.51×10^{13} cm$^{-2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ALD-Al_2O_3</td>
<td>7.3 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F^- treatment</td>
<td>CHF$_3$ RIE @ 30W for 260s</td>
<td>F^- Conc.\approx -1.21×10^{13} cm$^{-2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ALD-Al_2O_3</td>
<td>7.6 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F^- treatment</td>
<td>CHF$_3$ RIE @ 30W for 280s</td>
<td>F^- Conc.\approx -1.30×10^{13} cm$^{-2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ALD-Al_2O_3</td>
<td>8 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Al_2O_3 thickness after F^- RIE treatment (nm)</td>
<td>18.1 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

Fig. 2 (a) Bi-directional transfer characteristic of Dies A–C with benchmarking D-mode device in linear scale. The sweep was done in 20s and threshold voltage hysteresis (ΔV_{TH}) is demonstrated. (b) Bi-directional transfer characteristic in logarithmic scale and I_G-V_G characteristics of Dies A–C and D-mode device. Low gate leakage current has ensured the preservation of insulation quality of the gate dielectric with fluorine treatments.

Fig. 2 (a) shows the bi-directional transfer characteristics (sweep time=20s) of Dies A–C at $V_D=8$V comparing with D-mode MIS-HEMT with Al_2O_3 of 18nm without any gate recess. Fig. 2 (b) shows the bi-directional transfer characteristic of Dies A–C with benchmarking normally-on device at gate drive voltage in excess of $V_{TH}(V_{GT})$ of 10V in DC state (datapoints). Pulsed I_D-V_D (solid line) measured
with V_G pulse for 50ms switching between -30V and $V_{GT} = 10V$ with 50% duty cycle is also included. High I_{DMAX} of 350 mA/mm was found for Die A, showing effectiveness of annealing on mobility restoration; (b) The amount of I_{DMAX} degradation for pulsed I-V measurement compared with DC I-V results at different pulsed gate voltage. Alleviation in the current collapse effect is found for Die C.

Fig. 3 (a) compares the DC and pulsed I_D-V_D characteristic of Dies A-C at gate overdrive voltage ($V_{GT} = V_G - V_{TH}$) of 10V. For Pulsed I_D-V_D, it was measured with V_G pulse at $-30V$ for 50ms and 50% duty cycle to examine the current collapse effect due to deep-level trapping of electrons from gate injection to the trap sites within the gate dielectric, at the Al$_2$O$_3$/AlGaN interface, or along the surface. High I_{DMAX} of 350mA/mm from unannealed Die A under steady state has shown good preservation of 2DEG mobility after CHF$_3$ plasma treatment. In Fig. 3 (b), similar I_{DMAX} degradation was found for Die A, B, and C under small pulsed negative V_G, showing similar amount of trapped electrons since they are injected near the device surface. When pulsed V_G is large enough to inject electrons into the Al$_2$O$_3$/AlGaN interface, worse current collapse effect is for Die A compared with Die B and C due to absence of annealing to recover the etch damage. The worse I_{DMAX} degradation under high pulsed V_G agrees with the higher amount of deeper level traps shown in Table II.

![Conductance Method](image)

Fig. 4 Al$_2$O$_3$/AlGaN interface trap density (D_o) distribution within the AlGaN energy band obtained from conductance method ($E_T=0.165$ eV to 0.3 eV) and trapped interface charge Q_d from Bi-directional transfer characteristics before ($E_T=0.6$ eV based on 20s I_D-V_G sweep rate) and after 10s UV lamp illumination ($E_T=2$ eV) shown in Table II.

Fig. 4 shows the Al$_2$O$_3$/AlGaN interface trap density (D_o) distribution from the AlGaN E_V edge obtained from AC conductance method using Eq. (2) [5]. In Eq. (2), $(G_p/\omega)_{max}$ is the maximum value of the ratio between the parallel conductance (G_p) and the frequency in radians (ω) at each measured frequency, and A is the area of the gate. The corresponded trap energy level (E_T) from the conduction band edge to the frequency used in C-V measurements is given by the Schottky-Read-Hall statistics shown in Eq. (3) [5]. In Eq. (3), k_b is the Boltzmann’s constant, T is the ambient temperature, f is the characterized frequency, σ is the capture cross-section of the trap, which is about 3.4×10^{-13} cm2 [6], v_{th} is the average thermal velocity of electrons (about 2.6×10^7 cm/s), and D_{dos} is the effective density of states of electrons within AlGaN, which is about 3.3×10^{13} cm$^{-3}$ [6]. Annealing would increase the shallow trap level (E_T) density near the E_C edge by about a factor of ten, while the deeper-level Q_d obtained before ($E_T=0.6$ eV based on 20s I_D-V_G sweep rate) and after ($E_T=2$ eV, mid-gap of AlGaN) UV illumination with wavelength of 365nm for 10s shown in Table II decreases with raised annealing temperature.

\[
D_{it} = \frac{2.5}{Aq} \left(\frac{G_p}{\omega} \right)_{max}
\]

\[
E_T - E_C = k_b T \ln(2\pi\sigma v_{th} D_{dos})
\]
Fig. 5 Schematic energy band diagram of Al₂O₃/AlGaN/GaN interface at (a) V_G=0V (leakage current induced by hole trapping in shallow D₀ and hopping across the gate region into the channel) (b) V_G=V₁ in positive sweep (trapping of Qₜ from 2DEG) and (c) V_G=V₁ in negative sweep (2DEG depletion from Qₜ resulted in positive V_TH shift).

Fig. 5 explains the effect of carrier trapping & de-trapping mechanisms on ΔV_TH through schematic energy diagram. In Fig. 5 (a) when V_G=0V, holes accumulated at AlGaN/GaN interface will be trapped at the shallow Al₂O₃/AlGaN trap levels and hopping across the gate region into the channel induces drain leakage current. More shallow level traps were found for annealed dies shown in Fig. 4 explains greater drain leakage current for Dies B & C shown in Fig 2(b). When V_G>V_TH=V₁ in positive sweep shown in Fig. 5(b), electrons from 2DEG will be trapped at Al₂O₃/AlGaN interface. Those trapped electrons will be slowly de-trapping back into 2DEG during negative sweep and those charges remained at the Al₂O₃/AlGaN interface will deplete the 2DEG that causes positive V_TH shift under the same gate bias V₁ shown in Fig. 5(c). Thus, a higher amount of deep-level traps will result in greater trapped charges and larger ΔV_TH during the negative sweep.

CONCLUSIONS

In this paper, the Al₂O₃/AlGaN interfacial quality for fluorinated Al₂O₃ gate dielectric with triple CHF₃ based plasma treatment has been verified. It is found that pre-fluorination annealing on the base layer Al₂O₃ decreased the amount of deeper level interfacial traps attributed to the V_TH hysteresis when carrying out bi-directional I_D-V_G sweep. However, shallower trap concentration increased, which resulted in higher off-state drain leakage current.

ACKNOWLEDGEMENTS

We acknowledge research funding support from Suzhou Science and Technology Grant number R-2014-S-005.

REFERENCES

ACRONYMS

HEMT: High Electron Mobility Transistor
ALD: Atomic Layer Deposition
PECVD: Plasma Enhanced Chemical Vapor Deposition
SEM: Scanning Electron Microscope
MIS-HEMT: Metal-Insulator-Semiconductor High Electron Mobility Transistor
ΔV_TH: Change in V_TH