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Abstract 

    The performance of HEMTs fabricated on a thin 

Al0.5Ga0.5N/GaN heterostructure with a total barrier 

thickness of 6.5 nm is presented and benchmarked to the 

epi-structure with a 13 nm thick Al0.3Ga0.7N barrier on an 

identical QuanFINE® structure. DC transfer 

characteristics on both samples with a gate length of 100 

nm demonstrate a high current above 1 A/mm. A higher 

extrinsic gm of 550 mS/mm is measured on the sample with 

a thinner high Al content barrier. Moreover, low trapping 

effects with a 12-14 % buffer-related dispersion at a VDSQ 

of 25 V are characterized for both samples, which indicate 

the advantage of the iron-free QuanFINE® 

heterostructure. 

INTRODUCTION  

    GaN HEMTs are gaining attention in the applications of 

high-frequency devices due to high breakdown voltage and 

high electron mobility, which yield a high power density with 

good efficiency. AlGaN barrier with a thickness above 10 nm 

and the Al composition beneath 30 % is commonly utilized 

for GaN HEMTs [1]. However, the transconductance (gm) is 

limited due to the thick barrier layer. Therefore, a thinner 

AlGaN barrier with higher Al content (>30 %) is proposed to 

improve gate response [2]. Lattice-matched InAlN barrier is 

another approach to reduce the barrier thickness, which has a 

higher 2DEG density than the AlGaN barrier thanks to a 

stronger polarization force. However, plausible Indium 

aggregation in the barrier might limit the reliability of devices 

[3].  

    The buffer is conventionally Fe or C doped to render good 

isolation [4]. However, devices made on Fe- or C-doped 

buffers suffer from trapping effects. Recently, a novel 

QuanFINE® heterostructure, which has a thin UID-GaN layer 

sandwiched in between a barrier and an AlN nucleation layer, 

potentially allows the AlN nucleation layer to act as a back-

barrier and to reduce the trapping effects [5, 6].  

    In this study, the first demonstration of a high Al-

containing thin Al0.5Ga0.5N barrier on a QuanFINE® structure 

was investigated. Device fabrication with DC and pulsed-IV 

characterization will be presented.  

EPI-GROWTH 

    The epitaxial layers were grown on a semi-insulating SiC 

substrate utilizing a MOCVD by SweGaN. Using SweGaN 

proprietary epitaxial growth process, a low thermal-

boundary-resistance AlN nucleation layer was grown and 

followed with a 250 nm UID-GaN layer [5, 6]. On top of this, 

a 5.0 nm Al0.5Ga0.5N layer (1.5 nm AlN exclusion layer and 

3.5 nm Al0.5Ga0.5N layer), and a 1.5 nm GaN cap layer were 

grown as the active layers (denoted as Al50, Fig. 1a). A ns of 

1.22ꞏ1013 cm-2 and a µe of 1700 cm2/V.s were characterized by 

contactless Hall measurements (Lehighton) and Rsh of 315 

Ω/sq was characterized by Eddy current measurement after 

epitaxial growth. These values demonstrate the good 2DEG 

properties achievable with a thin Al0.5Ga0.5N barrier on 

QuanFINE®-structure. The other epi-structure which has an 1 

nm AlN exclusion layer, a 10 nm Al0.3Ga0.7N barrier layer, 

and a 2 nm GaN cap layer with a ns of 1.16ꞏ1013 cm-2, µe of 

2030 cm2/Vꞏs, and Rsh of 286 Ω/sq was grown on nominal 

QuanFINE®-structure (denoted as Al30, Fig. 1b) to benchmark 

to Al50. [6] 

DEVICE FABRICATION 

    The epi-wafers were cleaned by the RCA cleaning process 

followed by a passivation-first 60 nm thick SiN layer 

deposited by LPCVD before device processing. Mesa etching 

was defined for device isolation and the ohmic contacts were 

achieved by deeply recessed Ta-based metal stacks [7]. A low 

Rc of ~0.3 Ωmm for both samples is characterized by TLM 

measurements. Two-fingers gates with passivation-assisted 

field plates, which have an Lg of 100 nm and a gate width of 

2x50 µm were defined by e-beam lithography with metal 

evaporation followed by lift-off process (Fig. 1).  

 

Fig. 1. Schematic of device layout for (a) Al50 and (b) Al30. 



HEMTS RESULTS 

    Different I-V measurement windows (VGS) were performed 

on two samples due to the shifting of VTH. HEMTs on both 

samples show a high IDS of ~1.1 A/mm (Fig. 2). A higher 

extrinsic gm of 550 mS/mm and a VTH of -0.9 V were 

measured on Al50 as compared to that on Al30 with a gm of 500 

mS/mm and a VTH of -1.8 V (Fig. 3) [6], which are mainly 

caused by a thinner AlGaN barrier. Short channel effects are 

revealed on Al50 and Al30 at high drain bias with an average 

DIBL shifting of 82 mV/V, and 50 mV/V, respectively, 

extracted at the IDS of 1 mA/mm, while over the range of 

measured VDS from 1 to 25 V (Fig. 4). A higher leakage 

current was measured on Al50, which might be caused by a 

thinner barrier with a different Schottky barrier condition. 

These results indicate that further buffer confinement and 

mitigation of leakage currents are required for short gate 

length devices.      

 

Fig. 2. I-V measurements for (a) Al50 and (b) Al30. 

 
Fig. 3. gm measurements for (a) Al50 and (b) Al30. 

 

Fig. 4.  DIBL measurements for (a) Al50 and (b) Al30. 

     A low surface-related current collapse of 0.5 % and 4 % 

were measured on Al50 and Al30, respectively, which indicate 

that the LPCVD SiN passivation is compatible with different 

barrier design (Fig. 5). Moreover, low buffer-related 

dispersion of 12 % and 14 % for Al50 and Al30, respectively, 

highlight the advantage of using QuanFINE®, which removes 

the intentional iron and carbon dopants in GaN. 

 

Fig. 5. Pulsed-IV measurements for (a) Al50 and (b) Al30. 

CONCLUSIONS 

 A 50% Al content thin AlGaN barrier is successfully 

grown on QuanFINE® heterostructure with excellent 2DEG 

properties. High IDS-sat and gm combined with low trapping 

effects can potentially translate to a better large-signal RF 

performance. Further improvements of the 2DEG 

confinement from the backside such as inserted AlGaN back-

barrier and/or reduced UID-GaN layer thickness of 

QuanFINE® are required for highly down-scaled HEMT 

technologies. 
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 ACRONYMS 

HEMTs: High electron mobility transistors 

Lg: Gate length 

IDS: Drain-source current 

IDS-sat: Drain-source saturation current 

Rc: Contact resistance 

Rsh: Sheet resistance 

ns: 2DEG concentration 

µe: Electron mobility 

2DEG: Two dimensional electron gas 

UID-GaN: Unintentional doped-GaN 

LPCVD: Low pressure chemical vapor deposition 

VGS: Gate-source voltage 

VTH: Threshold voltage 

DIBL: Drain induced barrier lowering 


