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Abstract 
 A significant challenge in high volume semiconductor 
manufacturing is reduction of particle defects. This study 
concentrates on plasma etch processes using an 
Inductively Coupled Plasma (ICP) tool. Particles in an 
ICP etch tool originate from the etchant gases and etch 
byproducts that deposit on the chamber components and 
tend to fall on the wafer during etch. In this paper, a new 
clean and conditioning procedure to reduce particle 
formation in a chlorine-based process is reviewed. 
Automated Optical Inspection (AOI) of the wafer before 
and after the etch, help to quantify the yield improvement. 
Implementation of clean and conditioning before every 
production lot, reduced the yield loss from ~6% to ~1.5% 
at highest RF hours of the chamber. Average of individual 
defects with highest population dropped from ~30 to ~5 
per wafer. Eliminating a strong correlation between yield 
drop versus the number of particles of the same size was 
shown by regression as a character of clean. Classification 
revealed another character of the clean with reducing the 
probability of wafers to fail from ~80% down to ~50% for 
a same particle numbers and size. More advanced 
classification based boosting model conveyed another 
physical property of this clean in eliminating the influence 
of certain particle sizes on the yield loss.  
 
INTRODUCTION 
 
 Plasma based dry etch is commonly used in semiconductor 
device fabrication. One of the major contributors to defect 
formation on wafers in plasma etch is particulate 
contamination [1-3]. Particles can either block the etch or 
remain on the wafer after the etch causing overall yield loss 
[4]. Generation of particles in the etch chamber, is affected by 
the etchant gases and the materials being etched and condition 
of the chamber [5]. These defects may originate from 
chamber walls, lid, gas inlet, electrostatic chuck, plasma or 
wafer itself. To suppress the particle generation, techniques 
such as dehydration of chamber walls [6] and protective 
coating [7] were used. Inductively coupled plasma (ICP) 
based cleaning techniques have been reported in tools that run 
production with fluorine-based gases [8-9].  
Automated optical inspection (AOI) is commonly used to 
extract the particle defects maps and images data including 

defects area, dimension, aspect ratio and coordination on the 
wafer [10]. The overall statistical data contains the critical 
leads to discover sources of the defects and determining 
which source controls the generation of what type of defects 
[11]. For example, simulation models for defects categorized 
into their pattern types provides information about causes 
including particles, chemical stains, or human mistakes. 
Costly, erroneous and insufficient process of manual analysis 
of the data drive the analysis processes toward using machine 
learning models [12].  
This paper introduces a new technique to add a clean and 
conditioning procedure in ICP tools running high volume 
production with a chlorine-based gas to remove sources of 
particles. The chemical sources of defects were investigated 
by analyzing the elemental composition of the defect. AOI 
results of wafers before and after etching in the ICP tool was 
used to demonstrate the effectiveness of adding the clean 
process in reducing added particles during etch. The AOI 
yield drop during etch with and without clean were compared. 
Distribution of the average number of particles added to the 
wafers during the etch versus the particle size was shown for 
each condition. The yield values versus the number of 
particles sorted by size, were documented for all conditions. 
Supervised machine learning models were fitted to the data 
for each of the conditions with and without clean. Regression 
and classification models were created to identify the 
correlation and estimate the yield drops versus the number of 
the particles of a certain size. Gradient boosting model was 
used to determine the significance of particle numbers in 
controlling the yield drops for each particle size. The results 
of these models were used to explain the physics of adding 
the clean to the process based on the results. They can also be 
used for future studies to determine the most effective 
particles reduction solution among cleans with different gas 
chemistries, plasma conditions or non-plasma-based 
approaches.  
 
EXPERIMENTAL 
 
 Production wafers processed in two ICP tools were used 
to perform the experiments. MOCVD grown six-inch GaAs 
wafers were processed through several integration steps and 
were etched at different layers in these two tools. AOI tool 
was used to inspect wafer surface before and after the etch 



 

 

step. Inspection results were used to calculate the yield drops 
and defects added to the wafers solely during the etch in two 
conditions: with clean and without clean. Seven lots were 
with no clean and seventeen lots with added clean were 
inspected before and after the etch. Bare GaAs wafers used 
for clean and conditioning before running the lot. An Oxygen 
based clean with high pressure together with a chlorine-based 
conditioning both with high ICP to bias power ratio above 
20:1 was used for the clean and conditioning. 
 
RESULTS AND DISCUSSION 
 
 Fig. 1 shows the AOI wafer map before and after etch, 
with no clean, showing the defects as small dots. The insets 
show the scanning electron microscope (SEM) and energy 
dispersive spectroscopy (EDS) of the same particle added to 
the wafer during the etch. The number of particles normally 
added to the wafer during the etch were quite significant, 
causing ~2.3% yield loss for this wafer. 
 

 
 
The results of a sample wafer AOI map of the defects before 
and after the etch with added clean were shown in Fig. 2. 
From the defect map, the number of the particles added to the 
wafer during the etch was significantly reduced to ~0.2% 
compared to the wafer shown in Fig. 1. 
 

 
To compare the overall effects of implementing clean before 
running the production lots, the yield drops were plotted as a 
function of tool RF hours in Fig. 3. No clean before running 
lots plotted in red results in relatively higher yield drop 
compared to implementing clean before every lot plotted in 
blue. We can see that the added defects increase significantly 
when no clean is used in the process.  
 

 
 
In Fig. 4 we have plotted the average number of particles 
added to the wafers sorted by particle size for both no clean 
(a) and with clean (b) conditions. The insets in each condition 
shows the first seven particle sizes with the highest average 
values. Interestingly, for both conditions, the particle size 
with the highest number of added particles during the etch is 
the same 2um. It should be noted that typically larger size 
particles have much fewer adders. With the clean process the 
average number of added particles for all sizes were reduced 
showing the overall effectiveness of implementing the clean. 
 

 
Fig. 1.  AOI wafer map before and after etch with no 
clean. The insets show the SEM and EDS data of an 
added particle during etch. 

 
Fig. 2.  AOI wafer map before and after etch with the 
clean implemented before running the production lot. 

 

 
Fig. 3.  AOI yield drop percentage per tool RF hours. 



 

 

 
 
To underline the effectiveness of adding a clean process, a 
polynomial regression model for 2 µm² particles was 
generated, shown in Fig. 5. The solid lines show the fitted 
model, and the dashed lines show the estimated 95% 
confidence intervals for the function. In the no clean model, 
the yield drop is a stronger function of number of particles 
compared to clean condition. A second-degree polynomial 
could better describe the no clean yield drop whereas the yield 
drop in the clean is a weak linear function of the number of 2 
µm² particles. Even excluding few higher points for no clean, 
a first degree polynomial would have a higher slope for no 
clean compared to clean. This indicates that the clean 
mitigated the effect of the number of 2 µm² particles on the 
yield drop during the etch. For estimation purpose, at high 
number of particles in clean, we don’t expect much increase 
in yield loss as opposed to no clean. This regression model 
can be produced for other particle sizes and be used to 
determine the effectiveness of adding the clean in controlling 
other sizes of particles based on the yield losses achieved.  
 

 
 
The regression model for each particle size explained in Fig. 
5, could be transformed into a classification model for 
simplifying the model and presenting in terms of “pass” and 
“fail” used in yield engineering. The classification model can 
provide more meaningful estimation especially at high 
number of particles of each size based on the physical 
conditions of the process. In this model, a yield drop of greater 
than 0.5% could be determined as fail for each of the 
processes, therefore a probability number 1 shows the yield 
drop being greater than 0.5 and the yield drop being smaller 
or equal to 0.5 shows a probability number of 1. Fig. 6. shows 

this model as a function of the number of 2 µm² particles. The 
solid lines in Fig. 6 show the fitted yield drop probability 
function and the dashed lines show the estimated 95% 
confidence intervals for the probability. The probability 
function is a second-degree polynomial for the no clean 
whereas the function is a linear versus the number of particles 
for the clean. The vertical small lines at the 0 or 1 probabilities 
show where the data occur. The no clean probability function 
shows almost a 100% value when having 50 or higher number 
of 2 µm² particles which means most likely the yield drops 
are beyond 0.5% in this region. The graph also shows that 
beyond ~20 number of 2 µm² particle, the probability of 
having yields drops higher than 0.5% is high. On the other 
hand, for the clean, probability linear function is closer to zero 
across all range of number of 2 µm² particles meaning the low 
probability of having more than above 0.5% yield drop in this 
condition. Overall, the physical estimation provided by the 
classification model is that by adding the clean to the process 
for the similar number of particles ~35, the probability of 
wafers to fail is ~50% as compared to no clean for which this 
probability is beyond 80%. 
 

 
 
Extracting the influence of number of particles of various 
sizes on the yield drops allows determining the physical 
effects of adding the clean to the process in broader extent. 
Therefore, the classification approach was used to create a 
gradient boosting model to compare the effects of number of 
particles on yield drops for different sizes of particles up to 30 
µm² shown in Fig. 7. In the absence of clean, particle sizes of 
5 µm² and 7 µm² and in the presence of clean particle sizes of 
2 µm² and 4 µm² play the most important role in controlling 
the yield loss. This can explain the natural physical character 
of this clean process which mitigates the influence particle 
sizes of 5 µm² and 7 µm².  
 

 

 
Fig. 4.  Average distribution of the particles per wafer 
for each particle size when a) no clean, b) clean was 
applied. 

 

 
Fig. 5. Regression models for yield drop per the 2 µm² 
particles when a) no clean, b) clean was applied. 

 

 
Fig. 6.  Classification models for yield drop per the 2 
µm² particles when a) no clean, b) clean was applied. 



 

 

 
 
CONCLUSIONS 
  
 This paper introduces a new clean and conditioning step 
in plasma ICP etch chambers before running the production 
lot to prevent particles from forming on wafers during etch 
process in high volume manufacturing. Defect particle 
detection AOI tool was used to inspect the wafers before and 
after the etch and determine the yield drop and particles added 
to the wafer only during the etch process. By implementing 
the clean and conditioning wafers, the yield drop was reduced 
significantly from the highest up to ~6% to less than ~1.5% 
even at the high RF hours of the ICP chamber. The average 
number of defects per wafer for the highest in pareto reduced 
from ~30 to ~5. Regression model for the smallest defect 2 
µm² showed a strong relationship between the yield drop and 
number of particles in presence of clean showing that the 
clean reduced the effect of number of these particles on the 
yield drop. Classification model provided an estimation with 
high probability ~80% of wafers to fail in the absence as 
oppose to a probability of ~50% in the presence of clean for 
relatively small number of particles. Classification based 
boosting model revealed the physical character of the clean 
used here in reducing the influence of particle sizes of 5 µm² 
and ~7 µm² on yield drops. The results can be used for future 
studies to define the optimum clean process where the clean 
process nature or parameters vary. 
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ACRONYMS 
AOI: Automated Optical Inspection 
ICP: Inductively Coupled Plasma 

 

 
Fig. 7.  Boosting models of the relative influence of 
yield drop per particles of different sizes when a) no 
clean, b) clean was applied. 


