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Abstract 

Advanced process control has been used successfully for 
decades to optimize quality and yield in semiconductor 
manufacturing.  However, process control still involves lots 
of highly skilled manual interventions during construction, 
operation, and maintenance of the process controller.  
Here, we show how artificial intelligence (AI) and machine 
learning (ML) techniques can be used to automate and 
optimize these processes, further increasing quality and 
reducing cost of operations and human intervention.  
Specifically, this paper will cover the results of a closed 
loop AI/ML controller for a deposition process.  We 
motivate the opportunity of closed loop AI/ML control in 
run-to-run scenarios, summarize the common challenges 
of implementation, and share best practices for success.  
These learnings should provide a roadmap for engineers 
throughout the semiconductor field to plan and execute 
implementations of AI/ML closed loop process control 
more effectively. 

INTRODUCTION 

In the semiconductor manufacturing space, we are seeing a 
strong level of interest in AI/ML.  Several years back, the 
interest began with investment in AI/ML to support predictive 
maintenance – using AI/ML to make better decisions about 
when and how to maintain expensive capital equipment.  More 
recently there has been a surge of interest in leveraging AI/ML 
to make better and faster decisions around process engineering 
and process control.   

For an industry that creates the most advanced hardware in 
the world for automation, there is a surprisingly large amount 
of manual decision making and manual action within 
semiconductor manufacturing.  At the core of process 
engineering is the development and maintenance of processes 
that produce on-target outcomes with minimized variance.  We 
estimate that process engineers spend 40-60% of their time 
reacting to, and fire-fighting manufacturing variation issues.   

In today’s semiconductor fabrication facilities (fabs), it is 
common to have data analytics tools monitoring process 
performance, such as statistical process control (SPC) charts, 

advanced process control (APC) tools, fault detection and 
classification data, and yield management systems.  These 
tools have helped to improve the quality and predictability of 
manufacturing, but their collective impact is reaching a point 
of diminishing returns because they require significant human 
configuration, monitoring, expertise, and interaction in order 
to further improve manufacturing results.  The application of 
AI/ML can not only better optimize processes, but also enable 
a greater level of automation in the manufacturing process, 
providing manufacturing gains that cannot be achieved with 
traditional methods.    

The goal of this paper is to motivate the opportunity of 
closed loop AI/ML control in run-to-run scenarios, summarize 
the common challenges of implementation, and share best 
practices for success that we have learned through multiple 
implementations.  We will cover: 

1. How AI/ML run-to-run process control differs from 
traditional APC, and why it can outperform classic APC 
for certain classes of processes. 

2. Examples of successful implementations of an AI process 
control controller using a closed loop AI/ML model for a 
semiconductor deposition process. 

3. A summary of the requirements to build a closed loop 
AI/ML model and the challenges to implementation 
commonly encountered within the semiconductor 
manufacturing industry.   

4. A set of learnings - best practices - for designing and 
building AI/ML closed loop process control algorithms 
that we have developed through iterative experimentation 
and real-world implementation.   

 
APC VERSUS AI PROCESS CONTROL 

APC typically refers to the use of a static control algorithm 
that adjusts multiple manufacturing recipe parameters in 
response to measurable observations.  As the complexity of 
manufacturing processes rises, the cost of constructing and 
maintaining APC controllers has increased.  One common 
issue with APC controllers is the inability to deal with inherent 
drift.  When manufacturing conditions drift over time or 
abruptly change, controllers must be manually updated to 



compensate for these changes.  Meanwhile, subpar controller 
performance leads to increased process variance until manual 
intervention is applied.  Consequently, process drift leads to 
greater maintenance costs, and in some cases these costs can 
simply outweigh the benefit of the controller. 

TABLE I 
COMPARISON OF APC AND AI PROCESS CONTROL  

APC AI Process Control 

Linear models Flexible model architecture 

Limited inputs (usually <=3)  Unlimited input dimensions 

Time-consuming DOEs Fewer and better DOEs 

Static model with 
exponentially weighted 
moving average (EWMA) 

Continually updated model 
with guardrails 

 Table I provides a summary of the key differences between 
classic APC and AI process control.  Several of the advantages 
of AI process control come from the ability to create 
significantly more complex mathematical models while still 
staying within practical computation time.  This allows 
incorporation of significantly more information into the 
control process imaging.  Another underlying benefit is the 
ability of AI/ML algorithms to automatically retrain as new 
data becomes available.   

As we will highlight, the use of AI/ML techniques in AI 
process control provides advantages over APC: 

● Reduction in implementation time and cost by 
streamlining data collection during design of experiments 
(DOE). 

● Tighter process control throughout the lifetime of a 
controller through closed-loop feedback 

● Reduction in maintenance costs by replacing manual 
interventions through automation. 

AI PROCESS CONTROL IN SEMICONDUCTOR DEPOSITION 

PROCESSES 

Tignis has successfully implemented AI process control for 
various semiconductor deposition processes.  Deposition 
processes are prone to drift due to the significant buildup of 
byproducts that can be deposited within the system.  The result 
is a gradual drift in the relationship between recipe parameters 
and outputs, such as the desired thickness of a deposited layer.  
To correct this, maintenance such as dry or wet cleans are 
periodically performed.  Static APC controllers perform poorly 
in these scenarios, particularly when the drift itself changes in 
unpredictable ways after maintenance or configuration 
changes.  In contrast, a closed loop AI process controller can 

continuously self-evaluate and adapt using historical and 
recent data. 

 
CLOSED LOOP AI PROCESS CONTROL PARADIGM 

Figure 1 is a schematic of a closed loop AI process controller 
for a deposition process.  At the heart of the schematic is the 
process model, which must accurately describe the relationship 
between the controllable recipe inputs and the desired target 
outputs.  To offset the recipe and control the deposition 
process, the model utilizes the base recipe, desired target 
setpoints, and recent batch data.  The batch data composition 
and the frequency with which it is collected varies.  Practically, 
data from the last previous batch (~20 wafers) is used to inform 
the model for the current batch.  Along with the recipe and 
target setpoints, this data must include metrology data and 
optionally sensor data, which was the case in all our 
implementations. 

In the bottom half of Figure 1, the retraining aspect of the 
AI process controller is described.  Process variance is 
continuously evaluated after each batch (Batch Data to 
Evaluate decision).  When performance dips below an 
arbitrary threshold, retraining can be initiated.  In a fully 
automated setting, the model will periodically undergo 
retraining incorporating recent batch data. 

DATA REQUIREMENTS FOR THE PROCESS CHARACTERIZATION 

MODEL 

The first step in constructing a controller is collecting data 
that allows for sufficient characterization of the process.  This 
is also where we come across the first big misconception when 

 
Fig.  1.  Schematic of a closed loop AI process controller 
used to control a deposition process. 



working with process owners to build AI process controllers.  
Process owners overvalue historical data from DOE or 
production runs and may believe it contains sufficient 
information to model their process.  Given that production 
recipes are normally static, it does not contain enough variation 
to map inputs to outputs.  DOE datasets, however, are intended 
to explore the sensitivity of recipe variables on metrology 
targets.  Unfortunately, the parameter space is large, and the 
high cost of tool time limits exploration.  Thus, most DOE 
datasets are typically small and focused on the launch of a new 
process.  In our experience, additional experiments were 
always required.  Provided historical data was insufficient.   

As alluded to, DOE datasets are limited due to their high 
cost.  Therefore, any new requested experiments should be 
minimized.  Using data that is initially available, an initial 
process model can be constructed.  Then, ML techniques can 
be employed to quantify the uncertainty of the initial model 
(1).  Uncertainty quantification is used to identify the portions 
of the parameter space most important for additional 
experimentation.  This strategy has allowed us to successfully 
petition for a minimal set of experiments to fully characterize 
several deposition processes. 

AI PROCESS CONTROL MODEL ARCHITECTURE 

With sufficient data in hand, the next major decision point 
in controller construction is choosing the process control 
model architecture.  The complexity of the model used to 
explain the relationships between inputs and outputs is vitally 
important in construction of any controller.  While complex 
non-linear models may perform very well in predicting outputs 
relative to inputs, a controller must take the additional step of 
using an inverse model to infer the actual impact of the inputs.  
This poses a challenge for the inverse of complex models that 
result in multiple solutions.  At worst, the inverse model will 
yield unusable solutions.  At best, model complexity will 
increase variance.  This is exemplified in a case study by Onto 
Innovation where they compared the performance of a process 
controller using a linear and deep learning model (2).  Due to 
the simplicity of the process that they were modeling, the linear 
model outperformed the deep learning model. 

At Tignis, we’ve developed an innovative model 
architecture that decomposes the AI process control into 
multiple collaborating sub-models.   This decomposition 
provides several advantages: 1) it allows us to choose 
appropriate levels of complexity for the different sub-models, 
2) we can selectively retrain models, and 3) it enables us to 
predictably transform machine learning predictive models into 
optimizing controllers.  Overall, this paradigm provides 
flexibility to tackle the control problem, while maintaining 
simplicity.   

VALIDATION EXPERIMENTS 

To understand the impact of AI Process Control, we present 
results for deposition thickness from multiple implementations 
of our AI process controller designed to compensate for 
changes in the process model.   

In each case the historical data provided by the process 
owners was not sufficient.  That data was used to generate an 
initial model that was then analyzed to recommend a minimum 
set of experiments to re-characterize the process.  Once process 
characterization was complete, a longitudinal dataset was 
collected to incorporate the drift-compensating component of 
our controller.  The controller was then deployed and validated 
through experimentation. 

VALIDATION RESULTS 

Fig.  2.  AI process control of deposition thickness.  The 
absolute difference between target and measured thickness 
was ranged, normalized, and plotted.  Batch 1 represents an 
aggregate of wafers prior to a model update while batch 2 
represents an aggregate of wafers after the model update.   

Figure 2 plots the difference between desired target 
deposition thickness and actual deposition thickness 
(measured directly with a separate metrology step) in two 
wafer batches utilizing a Tignis AI process controller.  We 
normalized the results so that we can analyze the aggregate 
improvement in error reduction across disparate equipment.   

In Batch 1, with the controller using the initial fitting, there 
is significant deviation between the target and actual values.  
However, after retraining the controller on the Batch 1 
metrology data, Batch 2 shows significant improvement to 
thickness quality. 

In Figure 3, results are shown for an already tuned AI 
process controller after an abrupt tool configuration change.  In 
Batch 1, there is significant error between desired target 
setpoints and actual thickness.  However, controller retraining 



was able to automatically compensate for the abrupt change as 
shown with the much-reduced error in Batch 2. 

Overall, we have been able to consistently achieve over 25% 
improvement in baseline error through implementation of AI 
process controllers for deposition processes.  This 
improvement was quantified by calculating the percent 
difference in the absolute wafer-to-wafer thickness variation 
before and after implementation of a Tignis AI process 
controller.  In essence, reducing the process window size by 
more than one quarter.  Furthermore, the controllers can be 
trained very quickly, the models updates can be fully 
automated, and can be deployed by a fab process engineer 
without internal data science support. 

REQUIREMENTS FOR AI PROCESS CONTROL 

Table II lists the requirements and associated challenges to 
constructing a controller utilizing AI process control.  The 
work discussed above was vital in developing this list.  The 
requirements for process control in general are assumed to be 
fulfilled. 

CONCLUSIONS 

In summary, the controller described here is an example of 
how AI/ML closed-loop control can be applied in 
manufacturing environments now.  Semiconductor fabs can 
deploy these applications to improve product quality, yield, 
resource efficiency, labor cost, and uptime of tools.  As an 
example, we have demonstrated how AI process control can 
reduce deposition thickness variance by more than 25%.  The 
requirements and lessons presented here should help others in 
the implementation of their own AI/ML closed-loop control. 

TABLE II 
AI PROCESS CONTROL REQUIREMENTS AND ASSOCIATED 

CHALLENGES 

Requirement Challenge 

Process impacted by abrupt 
change or long-term drift 
that would complicate 
traditional APC. 

Prior understanding of the 
stability of a process will 
inform whether APC or AI 
process control is the better 
option. 

Dataset with sufficient input 
and output variation to 
characterize the process. 

DOE data is costly to 
collect, and available data 
for process characterization 
is typically small. 

Ability to provide new 
experimental data when 
required. 

Uncertainty quantification 
can be used to identify 
priority experiments to 
adequately build process 
characterization models. 

Process model that can be 
successfully inverted and 
used for inference. 

Classic AI/ML models are 
good for prediction, hard to 
use for optimization 

Longitudinal dataset to 
characterize batch-to-batch 
drift. 

In lab environments where 
data is collected, it can be 
difficult to collect data with 
completely static inputs. 

Sensor data that provides 
sufficient signal. 

Sensor data may not have 
any relationship with target 
drift, and their inclusion 
may result in worse control 
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ACRONYMS 

AI: Artificial Intelligence 
ML: Machine Learning 
SPC: Statistical Process Control 
APC: Advanced Process Control  
DOE: Design of Experiment 

Fig.  3.  AI process control of deposition thickness after 
selected tool configuration changes.  Absolute difference 
between target and measured thickness was ranged 
normalized and plotted.  Batch 1 represents aggregate of 
wafers prior to a model update while batch 2 represents an 
aggregate of wafers after the model update 


