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Abstract 
 Manufacturing of vertical GaN devices is important to 
its future use in high power electronics.  However, the 
current process is not mature, resulting in non-ideal 
behavior.  To improve manufacturing of GaN, reliable 
screening techniques are essential.  Machine Learning has 
proven useful for quality control in several fields though 
its use on wide bandgap semiconductors is limited.  This 
paper discusses several Machine Learning models used 
with optical profilometry to predict the quality of GaN 
diodes and their accuracy. 
 

I. INTRODUCTION  
 
 GaN wafer manufacturing and epitaxial growth have 
improved in recent years making vertical GaN technology a 
candidate for next generation high-power electronics[1]–[3].  
To meet the industry standard, wafer screening techniques 
such as photoluminescence, Raman spectroscopy, x-ray 
tomography, optical profilometry, and cathodoluminescence 
have been proposed [4].  It is well established that these 
techniques can detect defects that cause failures.  However, 
the analysis is not always straightforward. Therefore, novel 
analysis techniques such are Machine Learning are useful to 
explore.  
 
 Machine learning has proven useful for the semiconductor 
industry.  Positive results have been obtained from 
computationally-generated data from TCAD modelling [5]–
[8].  However, experimental reports are limited.  This is likely 
due to the large number of datapoints required for training the 
models. 
 
 It is likely that the ideal algorithm will involve a 
combination of several techniques.  However, with machine 
learning it is useful to determine which techniques correlate 
with each desired output characteristic since adding 
unimportant variables to the model can reduce its accuracy.  
This paper focuses on using optical profilometry to predict the 
forward and reverse bias behaviour of diodes.  That 
measurement is useful for investigating substrate quality since 
it is sensitive to many different types of defects.  However, it 
can be difficult to detect whether a specific section of the 

wafer is suitable for device growth by quick observation.  This 
is because the bumps, pits, and rough patches require 
complicated analysis to detect.  Several measurements can be 
used to identify these rough patches including the rms 
roughness, the number of outlier points (bumps and pits), and 
the height/depth of the defects.  This talk focuses on the 
effectiveness of machine learning models at predicting 
forward and reverse bias conditions - including low voltage 
leakage current, ideality factor, turn-on voltage, and turn-on 
resistance - using optical profilometry data. 

 

 
Fig. 1.  (Side View) Diagram of vertical GaN diodes 
used in this study.  
 
 

 
Fig. 2.  A top view, to scale image of all the diode sizes 
used in this study with appropriate labels.  Device areas 
range from (10-3 - 10-2 cm2). 
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II. EXPERIMENTAL 

 
A. Sample Fabrication 

 
 Vertical P-i-N diodes (Fig. 1) were processed using 
methods from our previous work [9]–[11].  Our team at 
Sandia National Laboratories grew in situ two GaN layers 
using the Taiyo Nippon Sanso MOCVD SR4000HT reactor 
and 10 different GaN substrates.  An 8 µm drift layer, doped 
with Si at n ≈ 2×1016 cm-3 and a subsequent p-layer 
approximately 500 nm thick were grown.  The p-layer was  
doped with [Mg] ≈ 2×1019 cm-3 giving an estimated hole 
concentration p ≈ 5×1016 cm-3 at room temperature.  Vertical 
diodes were fabricated with many shapes and sizes (see Fig. 
2).  The diode fabrication included a backside Ti/Al/Ni/Au 
layer and a topside Pd/Pt/Au layer.  A trench isolation layer 
was etched outside the devices using an Ar/Cl2 plasma and a 
~ 600 nm multi-energy nitrogen implant with a box profile 
was done for further isolation within the trench.  The diodes 
also included an implanted guard ring/JTE hybrid termination 

[12].  

 
B. Optical Profilometry Data Collection (Input Data) 

 
 
 Before device fabrication, optical profilometry 
measurements were taken on 2-inch vertical GaN PiN 
junctions with an x-y resolution of 4421 nm/pixel and a sub 
nanometer z axis resolution as described in our previous 
research [12].  All measurements were taken with the Zygo™ 
NewView 7300 optical profilometer. 
  
 After the measurements, the data were divided into small 
regions 325 x 325 µm in size. In each region, the RMS 
roughness was calculated as 
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Fig. 3.  The accuracy distribution of the models at predicting the pass rate of the turn on voltage (a), on-resistance (b), ideality 
factor (c), and 10 V reverse leakage (d).  Distribution was determined by constructing a gaussian from 100 results. 



where Z is the height of each region, and the area of bumps 
and pits was calculated  using an extreme Studentized deviate 
test for outliers as described in previous research [13]–[15]. 
 
 

C. Electrical Data Collection (Output Data)  
  
 The data was collected using a custom built auto probing 
system and several electrical instruments.  Forward bias and 
low voltage reverse bias (10 V) measurements were taken 
using a Keithley 4200 Source Meter Unit (SMU) with a 
preamplifier and 10 atto-amp measurement resolution. The 
measurements were taken on twelve wafers. 
 
 

D. Machine Learning Models 
 
     Four simple machine learning models from the Sklearn 
Python package were used to determine pass/fail for each 
device.  Those models were decision Tree, K-Nearest 

Neighbor (k=200), Logistic Regression, and a two-layer 
Neural Network with a logistic activation function.  These 
models are discussed in more detail in other works.  Since the 
number of devices is of the order of thousands, not millions, 
a binary pass-fail value is a more reliable metric.  All models 
were trained to predict three different behaviors with pass 
criteria listed:  
 

a. turn on voltage 2.8-4.8 V 
b. on-resistance < 10 mΩ-cm2   
c. ideality factor <  2.5 
d. 10 V reverse bias leakage < 100 nA 

 
The accuracy of all the variables was calculated by 

randomly sorting 80% of the data into a training section, and 
20% into the test section. The models were constructed using 
the trained data and their accuracies were tested using the test 
data. This test was repeated 100 times for each model testing 
each variable individually. The accuracy of the tests is shown 
in Fig. 3. 

 
Fig. 4.  The accuracy of the four machine learning models at predicting each variable- (a) Turn on Voltage (b) On Resistance 
(c) Ideality Factor and (d) Reverse Leakage at 10V- is shown. The models were trained on all the wafers except the one being 
tested in all cases. The red line represents the experimental result.  



 
III. DISCUSSION 

 
From the results in Fig. 3, all models have similar 

accuracies in most cases.  The models work especially well 
for Low Voltage Leakage and ideality factor with all being 
consistently over 75% accurate.  When predicting turn on 
voltage and Ron passage, the neural network and logistic 
regression methods often made inaccurate predictions.  For 
high voltage predictions, the neural network failed to 
converge. 
 

To test the accuracy of these methods at predicting the 
device yields on the wafer, all models were trained on all 
wafers excluding one, and tested on the remaining wafer.  The 
results (shown in Fig. 4) reveal that this method is effective in 
most cases. When testing VON the prediction accuracy is good, 
but the experimental pass rate of all the devices is quite high, 
this causes the model while training to put all borderline 
devices in the pass category, which could artificially raise the 
accuracy.   The RON is also shown to be difficult to predict 
with optical profilometry.  Though with many of the wafers 
in Fig. 4b, the models do predict the experimental result 
accurately, the individual devices results for two of the 
models in Fig. 3b result sometimes produce low accuracy.  
Additionally, the neural network model often failings to 
converge thus predicting passage rates of  0% or 100%, giving 
a wide distribution of accuracies in Fig. 3b though it is 
possible to train a neural network with similar accuracy to 
other models as done in Fig. 4b though it takes several 
iterations. The ideality factor and reverse leakage current 
passage rates appear to be well correlated thus the 
experimental and predicted passage rates are similar as seen 
in Fig. 4c-d. Additionally, all four models produce similar 
accuracy distributions as show in Fig. 4c-d indicating that 
these variables correlate with optical profilometry results 
well. 
 

Though all the models are reasonable at predicting 
results, decision tree stands out as particularly useful because 
it is the simplest to train, the computers decision making 
process can be directly seen, and it is less affected by adding 
unimportant variable to the models, thus this model produces 
high accuracy for all four variables. The most important 
variable for VON was the RMS roughness, for RON the device 
size, and for the Ideality Factor and Reverse Leakage the area 
of bumps and pits near the device. 
  

IV. CONCLUSIONS 
  
 In summary, optical profilometry measurements were 
combined with machine learning to produce models capable 
of pass-fail predictions for vertical PiN diodes.  It was 
determined that Ideality Factor and Low Voltage Leakage are 
well predicted using optical profilometry, while RON and VON   
had inconclusive results. The passage rate was too high with 

VON to make a definitive answer, and the RON had an 
inconsistent accuracy.  Likely the RON depends more on the 
fabrication process than on the pre-existing conditions of the 
wafer.  However, the high accuracy of the Decision Tree and 
KNN=200 models show there is potential to predict this 
quantity using machine learning with optical profilometry. 
Predicting the exact values of these variables with these 
methods would require more data and a more complex model 
such as a convolutional neural network on the optical 
profilometry data. 
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ACRONYMS 
 

RON:  On Resistance 
VON:  Turn on Voltage 
JTE: Junction Termination Extension 
Rev: Reverse 
 


