Analytical model for the source resistance in advanced In_xGa_{1-x}As/In_{0.52}Al_{0.48}As quantum-well high-electron-mobility transistors

Ji-Hoon Yoo¹, Jae-Hak Lee¹, Yong-Hyun Kim², Sang-Kuk Kim², Jacob Yun², Ted Kim², In-Geun Lee¹ and *Dae-Hyun Kim¹

¹School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Korea and ²QSI, Cheon-An, South Korea.

Keywords: In_xGa_{1-x}As, Source resistance, TLM, HEMT

Abstract (Times New Roman Font, Bold, Size 10)

We present a fully analytical model for the source resistance (Rs) in In_xGa_{1-x}As quantum-well high-electron mobility transistors based on a three-layer TLM system. The proposed R_s model in this work was derived by solving the coupled 2nd order differential equations for each current component in a non-alloyed source drain ohmic structure with appropriate boundary conditions, requiring only six physical and geometrical parameters, such as ohmic contact resistivity (ρ_c), barrier tunneling resistivity ($\rho_{barrier}$), sheet resistances of the cap and channel regions (Rsh_cap and Rsh_ch), side-recessed length (Lside) and gate-to-source length (L_{gs}). We fabricated two different TLM structures to extract each model parameter, such as cap-TLM and recessed-TLM patterns. The developed Rs model in this work was in excellent agreement with the R_S values measured from the two TLM devices and previously reported short- L_g HEMT devices. The model revealed that the barrier tunneling resistivity already played a critical role in reducing the value of R_s in stateof-the-art HEMTs. Unless the barrier tunneling resistivity is reduced considerably, innovative engineering on the ohmic contact characteristics and the reduction on gateto-source spacing (L_{gs}) would only marginally improve the device performance.

INTRODUCTION

sixth-generation (6G) The evolving wireless communication technologies demand higher operating frequencies of approximately 300 GHz with data rates approaching 0.1 Tbps [1,2]. To meet this urgent requirement, transistor technologies must be engineered to sustain the evolution of digital communication systems, guided by Edholm's law [3]. Among various transistor technologies, indium-rich In_xGa_{1-x}As quantum-well (QW) high-electronmobility transistors (HEMTs) on InP substrates provide the best balance of current-gain cutoff frequency (f_T) and maximum oscillation frequency (f_{max}) , and the lowest noise figure characteristics from the microwave to sub-millimeterwave regions [4–8]. These transistors adopt a combination of L_g scaling down to sub-30 nm, enhancement of the channel carrier transport by incorporating the indium-rich channel design, and reduction of all parasitic components.

Among various parasitic components, it is imperative to minimize the source resistance (R_S) to bring up the superior intrinsic performance of the $In_xGa_{l-x}As$ QW channel [9,10], demanding an analytical and physical model for the source resistance. Considering state-of-the-art In_xGa_{1-x}As HEMT technologies [11–14], source and drain contacts have been created with a non-alloyed metal stack of Ti/Pt/Au with a source-to-drain spacing (L_{ds}) between 1 µm and 0.5 µm. Historically, R_S has been minimized by improving ohmic contact characteristics to reduce the ohmic contact resistivity (ρ_c) [15] and shrinking the gate-to-source spacing (L_{gs}) using a self-aligned gate architecture [16,17]. However, it is very challenging to reduce $R_{\rm S}$ to below 100 Ω ·µm, because of the tunneling resistance component between the heavily doped $In_{0.53}Ga_{0.47}As$ capping layer and the $In_xGa_{1-x}As$ QW channel layer through the In_{0.52}Al_{0.48}As barrier layer. To understand the limit of R_S in HEMTs in an effort to reduce R_S , a sophisticated and comprehensive model must be developed for R_S in state-of-the art HEMTs, rather than the simple lumped-elements-based one-layer model [18,19].

Previously, two-layer system-based R_S model was developed by Feuer [20], which can explain the alloyed ohmic contact structures with two different contact resistances: one was associated with a heavily doped GaAs capping layer and the other with an undoped GaAs QW channel layer. However, the two-layer system-based model could not fully explain R_S with non-alloyed ohmic structure. Herein, we present a fully analytical and physical model for R_S in advanced HEMTs, demanding only six physical and geometrical parameters. The model consists of three different regions: (i) an analytical three-layer TLM for the source electrode region, (ii) an analytical TLM for the access region and (iii), a one-layer transmission-line model (TLM) for the side-recess region, to accurately predict a value of R_S in a given HEMT structure and identify dominant components to further minimize R_S . To do so, we proposed and fabricated two different types of TLM structures to experimentally extract each model parameter of R_S . The proposed model in this work is in excellent agreement with the measured values of R_S from the fabricated recessed TLM test structures, as well as recently reported advanced HEMTs. Most importantly the findings in this work reveal

that the barrier tunneling resistivity is a bottleneck for further reductions of R_S in advanced HEMTs.

ANALYTICAL MODEL FOR THE SOURCE RESISTANCE

Figure 1 (a) and (b) show the cross-sectional schematic and TEM images of advanced $In_xGa_{1-x}As$ QW HEMTs on an InP substrate [4]. They adopt non-alloyed S/D ohmic contacts such as a metal stack of Ti/Pt/Au with contact resistance (R_C) values between 10 Ω ·µm and 20 Ω ·µm. Carrier transfer from the cap to channel by a tunneling mechanism through an $In_{0.52}Al_{0.48}As$ barrier layer. To model R_S , a comprehensive transport mechanism from the source ohmic electrode to the $In_xGa_{1-x}As$ QW channel via the $In_{0.53}Ga_{0.47}As$ cap and $In_{0.52}Al_{0.48}As$ barrier layers must be considered in a distributed manner, when will be discussed next.

Figure 1 (a) Cross-sectional schematic, and (b) TEM images of advanced $In_xGa_{1-x}As$ QW HEMTs [4].

Figure 2 (a) illustrates a complete distributed equivalent circuit model for R_{S_s} comprising three regions. One is the source ohmic electrode region (Region-I), where the electrons are injected from the ohmic metal to the $In_{0.53}Ga_{0.47}As$ cap and then to the $In_xGa_{1-x}As$ QW channel through the $In_{0.52}Al_{0.48}As$ barrier, which is governed by a three-layer TLM system. Another is the source access region (Region-II), where the electron transfer mechanism is governed by a cap-to-channel two-layer TLM system with transfer length $(L_{T_barrier})$ given by $\sqrt{\rho_{barrier}/(R_{sh_ch} + R_{sh_cap})}$. The other is the side-recessed region (Region-III), where a simple one-layer model works. **Figure 2 (b)** highlights a differential segment at a given location in source model from x to x+dx.

Next, let us derive a fully analytical and physical expression for R_s . Given the coordinate system in Fig. 2 (a), R_s can be determined by $V_{ch}(x = -L_{gs})/I_0$ from Ohm's law, including that the problem is how to express each current

Figure 2 (a) Equivalent circuit model of the source resistance in the advanced HEMTs and (b) differential segment from x to x +

component as a function of x such as $I_{ch}(x)$, $I_{cap}(x)$, and $I_{met}(x)$. In a given segment as highlighted in **Fig. 2 (b)**, we can define a differential contact conductance as $dg_c = (W_g/\rho_c) \times dx$, a differential barrier conductance as $dg_{barrier} = (W_g/\rho_{barrier}) \times dx$, a differential lateral cap resistance as $dr_{s_cap} = (R_{sh_cap}/W_g) \times dx$ and a differential lateral channel resistance as $dr_{s_ch} = (R_{sh_ch}/W_g) \times dx$. At location x, Kirchhoff's current and voltage laws yield, respectively

$$\frac{d^2 I_{met}(x)}{dx^2} = [R_{met} \cdot I_{met}(x) - R_{sh_ch} \cdot I_{cap}(x)]\rho_c^{-1}$$
(1)

$$\frac{d^2 I_{ch}(x)}{dx^2} = [R_{sh_ch} \cdot I_{ch}(x) - R_{sh_cap} \cdot I_{cap}(x)]\rho_{barrier}^{-1}$$
(2)

$$I_{cap} = I_0 - I_{met} - I_{ch} \tag{3}$$

These are coupled quadratic differential equations for three current components ($I_{ch}(x)$, $I_{cap}(x)$ and $I_{met}(x)$). From the general solution for these differential equations with existing six boundary conditions (listed in Table 1), we obtain an analytical expression for $I_{ch}(x)$, $I_{cap}(x)$, and $I_{met}(x)$ for both regions, as written in **Table 1**. The expression for $V_{ch}(x = -L_{gs})$ can then be derived. Although there exist several ways to express $V_{ch}(x = -L_{gs})$, it is useful to focus on the total voltage drop across the In_xGa_{1-x}As QW channel from $x = -L_{gs}$ to $x = \infty$ in this work. From this,

$$V_{ch}(x = -L_{gs}) = \int I_{ch}(x) \cdot dr_{S_{ch}} dx \tag{4}$$

The source resistance, defined as $V_{ch}(x=0)/I_O$, is

$$R_{S} = \frac{V_{ch}(x = -L_{gs})}{I_{0}} = \frac{W_{g}R_{sh_ch}}{I_{0}} \int_{-L_{gs}}^{\infty} I_{ch}(x) \, dx \tag{5}$$

Table I Six boundary conditions, the general solution for three current components ($I_{met}(x)$, $I_{cap}(x)$ and $I_{ch}(x)$), and their corresponding eigenvalues and eigenvectors.

Overall, R_S depends on the ohmic contact resistivity, the sheet resistances of the cap and QW channel layers, the barrier tunneling resistivity, and the lengths of the gate-to-source region and side-recessed regions.

EXPERIMENTAL RESULTS AND DISCUSSION

Two types of TLM structures were fabricated, as shown in **Fig. 3** such as the cap-only TLM structure (*cap-TLM*, (**a**)) to evaluate the contact characteristics of the non-alloyed ohmic metal stack, and the recessed TLM structure (*r-TLM*, (**b**)) which is identical to the real device without a Schottky gate electrode. Details on the epitaxial layer design and device processing were reported in our previous paper [4]. All the device processing was conducted on a full 3-inch wafer with an i-line stepper to ensure fine alignment accuracy within 0.05 µm. In the *r-TLM*, we varied L_g from 40 µm to 0.5 µm and L_{gs} from 10 µm to 0.2 µm. In this way, the split of L_g yielded the sheet resistance of the QW channel (R_{sh_ch}) from the linear dependence, and the source resistance (R_s) from the *y*intercept at a given L_{gs} . Lastly, we investigated the dependence of R_S on L_{gs} in detail.

Figure 3 Cross-sectional schematic of *cap-TLM* (**a**) and *r-TLM* (**b**) test structures.

Figure 4 (a) plots the measured total resistance (R_T) against L_{ds} , which corresponds to the length between the edge of source and the edge of drain, for the fabricated *cap-TLM* structures. This yielded values of $R_{sh_cap} = 131 \ \Omega/\Box$, $R_C = 32 \ \Omega \cdot \mu m$, $L_{T_cap} = 0.34 \ \mu m$ and $\rho_c = 15 \ \Omega \cdot \mu m^2$, with an excellent correlation coefficient of 0.99999. Figure 4 (b) plots the measured R_T against L_g for the *r-TLM* structures with various dimensions of L_{gs} from 10 μm to 0.2 μm . When L_g was long enough, each *r-TLM* device yielded approximately the same slope for all L_{gs} with excellent correlation coefficient. Since we designed the symmetrical L_{gs} and L_{gd} , half of the *y*-intercept from Fig. 5 (a) corresponded exactly to R_S . In analyzing *r-TLM* structures with various L_{gs} , values of the

Figure 4 (a) Measured R_T against L_{ds} for cap-TLM and **(b)** against L_g for *r*-*TLM*.

correlation coefficient were also greater than 0.999, increasing the credibility of the overall TLM analysis.

Figure 5 (b) plots the measured R_S (filled symbols) from the *r*-TLM analysis against L_{gs} , as well as the projected R_S (line) from Equation (5) with the model parameters of $\rho_{barrier}$ = 91 Ω ·µm² and the others directly from the *cap-TLM* and *r*-TLM test structures. Additionally, the open symbols in Figure 6 came from the R_S extracted directly from the reported HEMTs [4] using the gate-current injection technique [21]. There are two points to identify in Fig. 6. First, all the measured R_S characteristics were explained by the modeled *R_S*. Second, *R_S* was linearly proportional to L_{gs} for $L_{gs} > 1 \mu m$, where its slope was 69 Ω/\mathbb{I} . Interestingly, this was close to the parallel connection of R_{sh_cap} and R_{sh_ch}. However, this linear dependence of R_S on L_{gs} was no longer valid for $L_{gs} < 1 \ \mu m$ and, most importantly, the measured R_S eventually saturated to approximately 123 Ω ·µm even with L_{gs} approaching 0. Our model clearly indicated that this was because of the barrier tunneling resistivity. The saturation of R_S in $L_{gs} = 0$ was because the necessary lateral length for the cap-to-channel tunneling was supplied by its equivalent transfer length from

Figure 5 Comparison of the modeled and measured R_s against L_{gs} ; (a) in the *linear-linear* scale and (b) in the *log-log* scale.

the leading edge of the source metal contact $(-L_{T_barrier} < x < 0)$ in Region-I.

Finally, let us discuss how to further reduce R_S with the R_S model proposed in this work. The three solid lines in **Fig. 6** are the model projections of R_S with the ohmic contact resistivity improve from 15 $\Omega \cdot \mu m^2$ (present) to 1 $\Omega \cdot \mu m^2$. Surprisingly, R_S would not be minimized that much even with a significant reduction in ρ_c and L_{gs} because of the $\rho_{barrier}$. Alternatively, the three dashed lines in Fig.5 are from the same model projection, but with $\rho_{barrier} = 20 \Omega \cdot \mu m^2$. Note that a reduction in the $\rho_{barrier}$ is critical; in consequence, the projected R_S would be significantly scaled down to 70 $\Omega \cdot \mu m$ and below. Under this circumstance, R_S could then be further reduced by the improved ohmic contact characteristics and the reduction of L_{gs} .

CONCLUSIONS

A fully analytical and physical investigation on R_S in advanced In_xGa_{1-x}As QW HEMTs was carried out with a three-layer TLM system. Analytical solutions to the three current components (source metal, cap, and channel) along the selected coordinate system with appropriate boundary conditions were derived. The proposed R_S model in this work required only six physical and geometrical parameters (ρ_c , $\rho_{barrier}$, R_{sh_cap} , R_{sh_ch} , L_{side} and L_{gs}), yielding excellent agreement with the R_S values measured from the two TLM devices and previously reported $\ln_x Ga_{1-x}As$ QW HEMTs. The developed model in this work could explain the saturation behavior of R_S for $L_{gs} < 1 \ \mu m$, which was due to the $\rho_{barrier}$. Therefore, one must pay a more careful attention to cut down the $\rho_{barrier}$ to further minimize R_S in future HEMTs.

ACKNOWLEDGEMENTS

This work was supported under the framework of international cooperation program managed by National Research Foundation of Korea (2022M3I8A1078437).

References

- S. Amakawa *et al.*, "White Paper on RF enabling 6G–opportunities and challenges from technology to spectrum," no. 13. University of Oulu, 2021.
- [2] M. Ikram2022, "A Road towards 6G Communication—A Review of 5G Antennas, Arrays, and Wearable Devices" *Electronics* 11, no. 1: 169. https://doi.org/10.3390/electronics11010169.
- [3] S. Cherry, "Edholm's law of bandwidth," in *IEEE Spectrum*, vol. 41, no. 7, pp. 58-60, July 2004, doi: 10.1109/MSPEC.2004.1309810.
- [4] H. -B. Jo *et al.*, " $L_g = 19$ nm In_{0.8}Ga_{0.2}As composite-channel HEMTs with $f_T = 738$ GHz and $f_{max} = 492$ GHz," *2020 IEEE International Electron Devices Meeting (IEDM)*, 2020, pp. 8.4.1-8.4.4, doi: 10.1109/IEDM13553.2020.9372070.
- [5] C. M. Cooke et al., "A 670 GHz Integrated InP HEMT Direct-Detection Receiver for the Tropospheric Water and Cloud Ice Instrument," in *IEEE Transactions on Terahertz Science and Technology*, vol. 11, no. 5, pp. 566-576, Sept. 2021, doi: 10.1109/TTHZ.2021.3083939.
- [6] A. Leuther et al., "20 nm metamorphic HEMT with 660 GHz fr," IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials, 2011, pp. 1-4.
- [7] S.-W. Yun *et al.*, "In_xGa_{1-x}As quantum-well high-electron-mobility transistors with a record combination of *f_T* and *f_{max}*: From the mobility relevant to ballistic transport regimes," 2021 IEEE International Electron Devices Meeting (IEDM), 2021, pp. 11.3.1-11.3.4, doi: 10.1109/IEDM19574.2021.9720667.
- [8] T. Takahashi et al., "Enhancement of f_{max} to 910 GHz by Adopting Asymmetric Gate Recess and Double-Side-Doped Structure in 75nm-Gate InAlAs/InGaAs HEMTs," in *IEEE Transactions on Electron Devices*, vol. 64, no. 1, pp. 89-95, Jan. 2017, doi: 10.1109/TED.2016.2624899.
- [9] P. J. Tasker and B. Hughes, "Importance of source and drain resistance to the maximum *fr* of millimeter-wave MODFETs," in *IEEE Electron Device Letters*, vol. 10, no. 7, pp. 291-293, July 1989, doi: 10.1109/55.29656.
- [10] K. Shinohara et al., "547-GHz fT Ina. Gao. 3As-Ina. 52Ala. 48As HEMTs with reduced source and drain resistance," in *IEEE Electron Device Letters*, vol. 25, no. 5, pp. 241-243, May 2004, doi: 10.1109/LED.2004.826543.
- [11] E.-Y. Chang *et al.*, "InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave applications." *Applied Physics Express* 6.3 (2013): 034001.
- [12] H.-B. Jo et al., "Sub-30-nm In_{0.8}Ga_{0.2}As Composite-Channel High-Electron-Mobility Transistors With Record High-Frequency Characteristics," in *IEEE Transactions on Electron Devices*, vol. 68, no. 4, pp. 2010-2016, April 2021, doi: 10.1109/TED.2020.3045958.

- [13] X. Mei et al., "First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process," in *IEEE Electron Device Letters*, vol. 36, no. 4, pp. 327-329, April 2015, doi: 10.1109/LED.2015.2407193.
- [14] D.-Y. Yun *et al.*, "Impact of the Source-to-Drain Spacing on the DC and RF Characteristics of InGaAs/InAlAs High-Electron Mobility Transistors," in *IEEE Electron Device Letters*, vol. 39, no. 12, pp. 1844-1847, Dec. 2018, doi: 10.1109/LED.2018.2876709.
- [15] Crook, Adam M et al., "Low resistance, nonalloyed Ohmic contacts to InGaAs." Applied Physics Letters 91.19 (2007): 192114.
- [16] N. Waldron, D.-H. Kim and J. A. del Alamo, "A Self-Aligned InGaAs HEMT Architecture for Logic Applications," in *IEEE Transactions on Electron Devices*, vol. 57, no. 1, pp. 297-304, Jan. 2010, doi: 10.1109/TED.2009.2035031.
- [17] D. A. J. Moran, H. McLelland, K. Elgaid, G. Whyte, C. R. Stanley and I. Thayne, "50-nm Self-Aligned and "Standard" T-gate InP pHEMT Comparison: The Influence of Parasitics on Performance at the 50-nm Node," in *IEEE Transactions on Electron Devices*, vol. 53, no. 12, pp. 2920-2925, Dec. 2006, doi: 10.1109/TED.2006.885674.
- [18] T. Takahashi, M. Sato, K. Makiyama, T. Hirose and N. Hara, "InAlAs/InGaAs HEMTs with Minimum Noise Figure of 1.0 dB at 94 GHz," 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007, pp. 55-58, doi: 10.1109/ICIPRM.2007.381121.
- [19] J. Jeong et al., "3D stackable cryogenic InGaAs HEMTs for heterogeneous and monolithic 3D integrated highly scalable quantum computing systems," 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2022, pp. 328-329,doi: 10.1109/VLSITechnologyandCir46769.2022.9830449.
- [20] Feuer, M.D. Two-layer model for source resistance in selectively doped heterojunction transistors. *IEEE Trans. Electron. Devices* 1985, 32, 7–11.
- [21] Azzam, W.J.; Del Alamo, J.A. An all-electrical floatinggate transmission line model technique for measuring source resistance in heterostructure field-effect transistors. *IEEE Trans. Electron. Devices* 1990, 37, 2105– 2107.

ACRONYMS

QW: Quantum-Well HEMT: High-electron-mobility transistor TLM: Transmission-line model