$L_g = 25 \text{ nm In}_{0.8}\text{Ga}_{0.2}\text{As}/\text{In}_{0.52}\text{Al}_{0.48}\text{As High-Electron Mobility Transistors on InP}$ Substrate with Both f_T and f_{max} in Excess of 700 GHz

In-Geun Lee¹, Su-Min Choi¹, Hyeon-Bhin Jo¹, Ji-Hoon Yoo¹, Hye-Hyun Kim¹, Jacob Yun², Ted Kim², Tae-Woo Kim³, Hiroki Sugiyama⁴, Takuya Tsutsumi⁴, Jae-Hak Lee¹ and *Dae-Hyun Kim¹

Tel.: +82-(53)-950-7844 E-mail address: <u>dae-hyun.kim@ee.knu.ac.kr</u>

¹School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, South Korea ²QSI, Cheon-An, Kyunggi-do, 31044, South Korea ³University of Ulsan, Ulsan, South Korea

⁴NTT Device Technology Laboratories, NTT Corporation, Kanagawa, Japan.

Keywords: Cut-off frequency (fr), maximum oscillation frequency (fmax), high-mobility-transistor (HEMT), InxGa1-xAs

Abstract

We present an $L_g = 25$ nm In_{0.8}Ga_{0.2}As/In_{0.52}Al_{0.48}As HEMT on a 3-inch InP substrate that delivers excellent high-frequency characteristics. The device exhibited a value of maximum transconductance $(g_{m_max}) = 2.4 \text{ mS}/\mu\text{m}$ at $V_{DS} = 0.5$ V and on-resistance $(R_{ON}) = 294 \Omega \cdot \mu\text{m}$. At V_{GS} = 0.15 V and $V_{DS} = 0.5$ V, the same device displayed an excellent combination of cut-off frequency $(f_T) = 709$ GHz and maximum-oscillation frequency $(f_{max}) = 702$ GHz. At its core, the indium-rich In_{0.8}Ga_{0.2}As composite channel with superior Hall mobility (μ_{n_Hall}) of 13,500 cm²V⁻¹s⁻¹ at 300 K was implemented, and the gate length (L_g) was successfully scaled down to 25 nm while maintaining the electrostatic integrity of the device.

INTRODUCTION

As predicted by Edholm's law, wireless data rates have doubled every 18 months over the past three decades [1]. The evolving sixth-generation (6G) wireless communication technologies will demand higher operating frequencies of around 300 GHz with data rates approaching 0.1 Tbps [2-3]. То this meet pressing requirement, semiconductor transistor technologies must be advanced in terms of noise and power efficiency at these frequencies in o rder to continue supporting the development of digital communications systems. This acquires a semiconductor transistor technology with THz operation speed.

Indium-rich (x > 0.53) $In_xGa_{1-x}As$ high-electron mobility transistors (HEMTs) on an InP substrate have shown great success for various low-noise and ultra-high-frequency applications from microwave to sub-millimeter-wave (sub-MMW), such as security/medical imaging system, collision avoidance radar, wireless local area networks (WLANs) and especially next-generation telecommunications [4-6]. To fully exploit the sub-MMW band, there is an immediate need to develop semiconductor transistor technologies that are capable of processing a signal in the sub-MMW regime. In this work, we demonstrated an $L_g = 25$ nm $In_{0.8}Ga_{0.2}As/In_{0.52}Al_{0.48}As$ quantum-well (QW) HEMT on a 3inch InP substate with an outstanding combination of DC and high-frequency characteristics.

FABRICATION PROCESS

The epitaxial layer structure used in this work was grown on a 3-inch semi-insulating InP substrate using metal-organic chemical-vapor-deposition (MOCVD). From top to bottom, the epitaxial layer structure consisted of a 30 nm thick heavily-doped multilayer cap structure with $n + In_{0.53}Ga_{0.47}As$ and $n + In_{0.52}Al_{0.48}As$, a 3 nm thick InP etch-stopper, a 9 nm thick In_{0.52}Al_{0.48}As barrier/spacer with Si δ-doping, a 9 nm thick indium-rich In_{0.8}Ga_{0.2}As QW channel, and a 200-nm In_{0.52}Al_{0.48}As buffer on the InP substrate. Details on the material growth were reported in Ref. 7. Key aspects are as follows: (i) a multi-layer cap design to lower S/D ohmic contact resistance. and (ii) an (1/5/3)In0.53Ga0.47As/In0.8Ga0.2As/In0.53Ga0.47As nm) composite-channel to improve carrier transport properties. As reported previously [7], the Hall mobility (μ_n Hall) was measured to be 13,500 cm²V⁻¹s⁻¹ with a two-dimensional electron gas density (n_{2-DEG}) of approximately 3×10^{12} cm⁻² at room temperature.

The process started with device isolation via mesa etching with a diluted H₃PO₄-based wet etching solution. Source-to-drain spacing (L_{SD}) was scaled down to 0.8 μ m and a non-alloyed metal stack of Ti/Mo/Ti/Pt/Au (5/10/10/10/25 nm) was used to form S/D ohmic contacts. Here, we intentionally thinned the thickness of S/D ohmic metals down to 60 nm, to obtain a uniform coating of the first ZEP e-beam resist in the tri-layer e-beam resist scheme during a T-gate ebeam lithography process step. After a contact pad formation of Ti/Au (20/500 nm), a 20-nm thick SiO₂ by plasmaenhanced-chemical-vapor-deposition (PECVD) was formed in between the source and drain ohmic contacts. After a gate recess process, a SiO₂-assisted T-gate with a metal stack of Pt/Ti/Pt/Au was created using a JBX-9300FS e-beam lithography machine with 100 kV, where the T-gate was placed in a tightly spaced source and drain with less than 50 nm alignment accuracy.

Fig. 1 (a) and (b) shows a schematic cartoon of an $In_{0.8}Ga_{0.2}As/In_{0.52}Al_{0.48}As$ QW HEMT on an InP substrate with the composite channel and a cross-sectional transmission-electron-microscope (TEM) image after the gate process. The device fabrication was nearly the same as in the previous report from our group [8]. This is a two-step recess process with a gate-to-channel distance, t_{ins} , of approximately 5 nm. Source-to-drain spacing (L_{SD}) was scaled down to 0.8 µm, and a non-alloyed metal stack of Ti/Mo/Ti/Pt/Au (5/10/10/10/200 nm) was used to form S/D ohmic contact. After a gate recess process, a SiO₂-assisted T-gate with a metal stack of Pt/Ti/Pt/Au was formed.

Fig. 1. (a) Cross-sectional schematic and (b) STEM image of an In0.8Ga0.2As/In0.52Al0.48As QW HEMT on InP substrate.

DEVICE PERFORMANCE

Since the fabricated In_{0.8}Ga_{0.2}As/In_{0.52}Al_{0.48}As QW HEMT in this work adopts the non-alloyed source and drain ohmic contacts, the overall source resistance (R_S) is a function of the actual source-to-gate spacing (L_{gs}), sheet resistances of the cap layer (R_{sh_cap}) and the channel layer (R_{sh_ch}), the ohmic metal contact resistivity to the multi-layer cap (ρ_c) and the barrier tunneling resistivity ($\rho_{barrier}$) through the In_{0.52}Al_{0.48}As barrier layer [9]. To extract all the parameters in R_s , we have designed two separate test patterns. One is a conventional

Fig. 2. Comparison of the modeled and measured R_s against L_{gs} .

regular cap TLM device and the other is called a recessed TLM device with various L_{gs} and L_g dimensions to extract R_{sh_ch} and $\rho_{barrier}$. Armed with the extracted values of those parameters, it was possible to predict the R_S with various dimensions of L_{gs} . Fig. 2 compares the measured and modeled R_S as a function of L_{gs} , showing that the modeled R_s is in excellent agreement with the measured one. The results also reveal that there is almost no decrease in R_s even with L_{gs} scale down to 0.5 µm and below. Based on these findings, the dimension of L_{ds} was designed to be 0.8 µm in this experiment to achieve a sufficiently low R_s .

Fig. 3 (a) shows the DC output characteristics of our representative In_{0.8}Ga_{0.2}As/In_{0.52}Al_{0.48}As QW HEMTs with $L_g = 25$ nm. The measured R_{ON} is less than 300 $\Omega \cdot \mu$ m from the output characteristics, which was due to the combination of the capping layer design and the optimized ohmic process. The ohmic contact resistance (R_c) of approximately 40 $\Omega \cdot \mu$ m was measured from the transmission-line-method (TLM). As shown in Fig. 3 (b), the same device delivered the maximum transconductance ($g_m \max$) of 2.4 mS/ μ m at $V_{DS} = 0.8$ V.

Fig. 3 (a) Output characteristics and (b) subthreshold and transconductance (g_m) characteristics at $V_{DS} = 0.05/0.8$ V of the fabricated In_{0.8}Ga_{0.2}As/In_{0.52}Al_{0.48}As QW HEMT with L_g = 25 nm.

The microwave characteristics of our representative $In_{0.8}Ga_{0.2}As/In_{0.52}Al_{0.48}As$ QW-HEMTs were characterized from 1–67 GHz using an Agilent PNA system with off-wafer

calibration. On-wafer open and short patterns were utilized to subtract pad-related capacitance and inductance components from measured scattering parameters (S-parameters) [10]. Fig. 4 plots a measured short-circuit current gain ($|h_{21}|^2$), Mason's unilateral gain (U_g), and a maximum stable gain (MSG) after de-embedding pad-related parasitic components for the fabricated device with $L_g = 25$ nm and $W_g = 2 \times 20 \ \mu m$ at V_{DS} = 0.5 V and $V_{GS} = 0.15$ V near the peak g_m bias condition. An excellent combination of $f_T = 709$ GHz and $f_{max} = 702$ GHz was obtained by extrapolating $|h_{21}|^2$ and U_g with a slope of -20 dB/decade.

Fig. 4. Measured (Solid lines) and extrapolated RF gains (dashed lines) for the L_g = 25 nm InGaAs/InAlAs HEMT at $V_{\rm DS}$ = 0.5 V and $V_{\rm GS}$ = 0.15 V.

CONCLUSIONS

In this work, we have demonstrated the $L_g = 25$ nm In_{0.8}Ga_{0.2}As/In_{0.52}Al_{0.48}As QW-HEMT technology that yielded outstanding $g_{m_max} = 2.4$ S/mm and high-frequency characteristics such as $f_T = 709$ GHz and $f_{max} = 702$ GHz at $V_{DS} = 0.5$ V. These results came from minimizing the contact resistance (R_C) and scaling L_{SD} down to 0.8 µm, coupled with the use of the indium-rich In_{0.8}Ga_{0.2}As composite channel design scheme.

ACKNOWLEDGEMENTS

This work has been sponsored by Samsung Research Funding & Incubation Center of Samsung Electronics under SRFC-IT2201-07.

REFERENCES

- [1] S. Cherry, "Edholm's law of bandwidth," *IEEE Spectr.*, vol. 41, no. 7, pp. 58–60, 2004.
- [2] M. Amakawa et al., White Paper on RF enabling 6Gopportunities and challenges from technology to spectrum, no. 13. University of Oulu, 2021.

- [3] M. Ikram, K. Sultan, M. F. Lateef, and A. S. M. Alqadami, "A Road towards 6G Communication-A Review of 5G Antennas, Arrays, and Wearable Devices," *Electronics*, vol. 11, no. 1, 2022.
- [4] E.-Y. Chang, C.-I. Kuo, H.-T. Hsu, C.-Y. Chiang, and Y. Miyamoto, "InAs Thin-Channel High-Electron-Mobility Transistors with Very High Current-Gain Cutoff Frequency for Emerging Submillimeter-Wave Applications," *Appl. Phys. Express*, vol. 6, no. 3, p. 34001, 2013.
- [5] R. Lai et al., "Sub 50 nm InP HEMT Device with Fmax Greater than 1 THz," in 2007 IEEE International Electron Devices Meeting, 2007, pp. 609–611.
- [6] S. Kang, D. Kim, M. Urteaga, and M. Seo, "State-of-theart THz integrated circuits in InP HBT technologies," in 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2017, pp. 25–27.
- [7] H. Sugiyama, T. Hoshi, H. Yokoyama, and H. Matsuzaki, "Metal-organic vapor-phase epitaxy growth of InP-based

HEMT structures with InGaAs/InAs composite channel," in 2012 International Conference on Indium Phosphide and Related Materials, 2012, pp. 245–248.

- [8] H.-B. Jo *et al.*, "L_g = 87 nm InAlAs/InGaAs High-Electron- Mobility Transistors With a g_{m_max} of 3 S/mm and f_T of 559 GHz," *IEEE Electron Device Lett.*, vol. 39, no. 11, pp. 1640–1643, 2018.
- [9] J.-H. Yoo *et al.*, "Analytical and Physical Investigation on Source Resistance in In_xGa_{1-x}As Quantum-Well High-Electron-Mobility Transistors," *Micromachines*, vol. 14, no. 2, 2023.
- [10] A. Bracale *et al.*, "A New Approach for SOI Devices Small-Signal Parameters Extraction," *Analog Integr. Circuits Signal Process.*, vol. 25, no. 2, pp. 157–169, 2000.