Eldad Bahat Treidel

Ferdinand-Braun-Institut, Berlin, Germany
  • The influence of the GaN substrate types and the active area scaling design on the conduction properties of vertical GaN MISFETs for laser driving applications

    Joachim Würfl, Ferdinand-Braun-Institut, Berlin, Germany
    Eldad Bahat Treidel, Ferdinand-Braun-Institut, Berlin, Germany
    Oliver Hilt, Ferdinand-Braun-Institut, Berlin, Germany
    Veit Hoffman, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
    Frank Brunner, Ferdinand-Braun-Institut, Berlin, Germany
    Bernd Janke, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
    Nicole Bickel, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
    Hossein Yazdani, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
    Hassan Gargouri, SENTECH Instruments GmbH

    In this work we present a systematic study on the conduction properties in vertical GaN trench MISFETs grown and manufactured on different free standing GaN substrates. It is shown that devices manufactured on ammonothermal substrates have superior conduction current density higher than 4 kA/cm2, specific on‑state resistance as low as 1.1 ± 0.1 mWcm2 and channel sheet resistance of 19.6 ± 0.9 Wmm. It is further shown that scaling these devices to large gate periphery is not limited by current spreading in the drift region, low channel mobility or by self‑heating. The conduction properties of devices manufactured on ammonothermal GaN substrates are found to be the most suitable for pulsed laser driving applications.

    Download Paper
  • May 12, 2022 // 11:10am

    14.2 Areal Vertical-Transmission Line Model Measurement for Drift Region Characterization in Vertical GaN-Based Devices

    Eldad Bahat Treidel, Ferdinand-Braun-Institut, Berlin, Germany
    Frank Brunner, Ferdinand-Braun-Institut, Berlin, Germany
    Oliver Hilt, Ferdinand-Braun-Institut, Berlin, Germany
    Joachim Würfl, Ferdinand-Braun-Institut, Berlin, Germany
    Mihaela Wolf, Ferdinand-Braun-Institut, Berlin, Germany
    Loader Loading...
    EAD Logo Taking too long?

    Reload Reload document
    | Open Open in new tab

    Download [1.87 MB]

    Download Paper
  • 9.3.2023 Drift Region Epitaxy Development and Characterization for High Blocking Strength and Low Specific Resistance in Vertical GaN Based Devices

    Eldad Bahat Treidel, Ferdinand-Braun-Institut, Berlin, Germany
    Frank Brunner, Ferdinand-Braun-Institut, Berlin, Germany
    Enrico Brusaterra, Ferdinand-Braun-Institut
    Mihaela Wolf, Ferdinand-Braun-Institut, Berlin, Germany
    Andreas Thies, Ferdinand-Braun-Institut
    J. Würfl, Ferdinand-Braun-Institut
    Oliver Hilt, Ferdinand-Braun-Institut, Berlin, Germany

    9.3.2023_Treidel