Joseph Spencer

U.S. Naval Research Laboratory, Washington, DC, USA, Virginia Tech
  • Exploring the capability of Hyperspectral Electroluminescence for process monitoring in vertical GaN devices

    Karl D. Hobart, U.S. Naval Research Laboratory
    Mona Ebrish, Vanderbilt University, Nashville, TN
    Travis J. Anderson, U.S. Naval Research Laboratory
    James Gallagher, U.S. Naval Research Laboratory
    Joseph Spencer, U.S. Naval Research Laboratory, Washington, DC, USA, Virginia Tech
    Jennifer Hite, U.S. Naval Research Laboratory
    Michael Mastro, U.S. Naval Research Laboratory

    GaN is a promising material for more efficient high frequency and high voltage power switching. However, GaN still is not the common material for power electronics due to immature substrate, homoepitaxial growth, and processing technology. Electroluminescence is a promising method to predict failure points due to high field stress, which can assist in the separation of inherent defects stemming from substrate quality, and from process-induced defects as well as identify problems related to proper edge termination design. In this work, we compare the Electroluminescence signatures of devices on inhomogeneous substrates to DC I-V behavior to demonstrate the utility of the technique for process monitoring.

    Download Paper
  • 11.4.2023 Nanocrystalline Diamond-Capped β-(AlxGa1-x)2O3/Ga2O3 Heterostructure FieldEffect Transistor

    Hannah N. Masten, National Research Council Postdoctoral Fellow, Residing at NRL
    James Spencer Lundh, National Research Council Postdoctoral Fellow, Residing at NRL
    Tatyana Feygelson, Naval Research Laboratory
    Joseph Spencer, U.S. Naval Research Laboratory, Washington, DC, USA, Virginia Tech
    Tatyana I. Feygelson, American Society for Engineering Education, United States Naval Research Lab. Universidad Politecnica de Madrid
    Jennifer K. Hite, Naval Research Laboratory
    Daniel Pennachio, U.S. Naval Research Laboratory, Washington DC
    Alan Jacobs, U.S. Naval Research Laboratory, Washington DC
    Boris Feygelson, U.S. Naval Research Laboratory
    Kohei Sasaki, Novel Crystal Technology
    Akito Kuramata, Novel Crystal Technology, Inc
    Pai-Ying Liao, Purdue University
    Peide Ye, Purdue University
    Bradford Pate, Naval Research Laboratory
    Travis J. Anderson, U.S. Naval Research Laboratory
    Marko J. Tadjer, U.S. Naval Research Laboratory

    11.4.2023_Masten- NCD HFET- 2023 CS Mantech – final paper_hnm

  • 15.5.2023 Scalable Selective Area Doping for Manufacturing of Planar Vertical Power GaN Devices

    Alan Jacobs, U.S. Naval Research Laboratory, Washington DC
    Boris N. Feigelson, Naval Research Laboratory
    Jennifer Hite, U.S. Naval Research Laboratory
    Joseph Spencer, U.S. Naval Research Laboratory, Washington, DC, USA, Virginia Tech
    Prakash Pandey, University of Toledo, Toledo OH
    Daniel G. Georgiev, University of Toledo, Toledo OH
    Raghav Khanna, University of Toledo, Toledo OH
    Marko J. Tadjer, U.S. Naval Research Laboratory
    Travis J. Anderson, U.S. Naval Research Laboratory

    15.5.2023 Alan Jacobs CS Mantech ExtAbstract_submission2